Feat: correction de l'exercice 9
continuous-integration/drone/push Build is passing Details

This commit is contained in:
Bertrand Benjamin 2022-01-18 09:55:08 +01:00
parent 33a549df0b
commit 5d9f9cbe74
4 changed files with 55 additions and 6 deletions

View File

@ -280,7 +280,6 @@
\begin{exercise}[subtitle={Bilan sur distance entre deux points}, step={2}, origin={dMeedC}, topics={Géométrie repérée}, tags={Coordonnées, distance}, mode={\faIcon{users}}]
Proposer une formule pour calculer le distance entre deux points du plan. Vous illustrerez la formule avec un dessin et vous l'appliquerez à un exemple de votre choix.
\end{exercise}
\begin{exercise}[subtitle={Exercice technique}, step={2}, origin={dMeedC}, topics={Géométrie repérée}, tags={Coordonnées, distance}, mode={\faIcon{tools}}]
@ -292,15 +291,64 @@
\end{enumerate}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item ~
\begin{tikzpicture}
\repere{-5}{4}{-4}{4}
\draw (3, -2) node {x} node [below left] {$M$};
\draw (-2, -3) node {x} node [below left] {$N$};
\draw (-4, 3) node {x} node [below left] {$P$};
\end{tikzpicture}
\item
Distance $MN$
\[
MN = \sqrt{\left(3 - (-2)\right)^2 + \left( -2 - (-3)\right)} = \sqrt{5^2 + 1^2} = \sqrt{25 + 1} = \sqrt{26}
\]
Distance $MP$
\[
MP = \sqrt{\left(3 - (-4)\right)^2 + \left( -2 - 3\right)} = \sqrt{7^2 + (-5)^2} = \sqrt{49 + 25} = \sqrt{74}
\]
Distance $NP$
\[
NP = \sqrt{\left(-2 - (-4)\right)^2 + \left( -3 - 3\right)} = \sqrt{2^2 + (-6)^2} = \sqrt{4 + 36} = \sqrt{40}
\]
\item On sait que $NM = \sqrt{26}$, $MP = \sqrt{74}$ et $NP = \sqrt{40}$
Or
\[
NM^2 + NP^2 = \sqrt{26}^2 + \sqrt{40}^2 = 26 + 40 = 76 \qquad \qquad MP^2 = \sqrt{74}^2 = 74
\]
Donc $NM^2 + NP^2 \neq MP^2$
Donc d'après le théorème de Pythagore le triangle $MNP$ n'est pas un triangle rectangle.
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Quadrilatère}, step={2}, origin={Sesamath 60p125}, topics={Géométrie Repérée}, tags={Coordonnées, distance}, mode={\faIcon{tools}}]
On considère les points $A(1; 2)$, $B(-6; 3)$, $C(6;7)$ et $D(-1; 8)$.
Déterminer la nature du quadrilatère $BACD$.
\end{exercise}
\begin{solution}
\begin{tikzpicture}
\repere{-7}{7}{0}{9}
\draw (1, 2) node {x} node [below left] {$A$};
\draw (-6, 3) node {x} node [below left] {$B$};
\draw (6, 7) node {x} node [below left] {$C$};
\draw (-1, 8) node {x} node [below left] {$D$};
\end{tikzpicture}
On a l'impression que le quadrilatère est un losange. Pour le démontrer on va calculer la longueur de ses côtés.
\end{solution}
% ---- étape 3
\begin{exercise}[subtitle={BEAU triangle}, step={3}, origin={dMeedC}, topics={Géométrie repérée}, tags={Coordonnées, milieu, distance}, mode={\faIcon{tools}}]
\begin{exercise}[subtitle={BEAU rectangle}, step={3}, origin={dMeedC}, topics={Géométrie repérée}, tags={Coordonnées, milieu, distance}, mode={\faIcon{tools}}]
Soit $B(3; 2)$, $E(-1; -2)$, $A(-3; 0)$ et $U(1; 4)$ quatre points du plan.
\begin{enumerate}
\item Calculer les coordonnées du milieu de $[BA]$

View File

@ -12,7 +12,6 @@
\xsimsetup{
exercise/print=false,
solution/print=true,
}
\pagestyle{empty}

View File

@ -231,9 +231,11 @@
\draw[->, very thick] (#1,0) -- (#2,0);
\draw[->, very thick] (0,#3) -- (0,#4);
\draw (0,0) node[below left] {$O$};
\draw [->] (0,0) -- (0,1) node[left] {$J$};
\draw [->] (0,0) -- (1,0) node[below] {$I$};
%\draw (1,0) node[rotate=90] {-} node[below] {$I$};
\draw (1, 0) node [below left] {1};
\draw (0, 1) node [below left] {1};
% \draw [->] (0,0) -- (0,1) node[left] {$J$};
% \draw [->] (0,0) -- (1,0) node[below] {$I$};
% \draw (1,0) node[rotate=90] {-} node[below] {$I$};
}
\newcommand{\repereNoGrid}[4]%
{%