129 lines
3.6 KiB
TeX
129 lines
3.6 KiB
TeX
|
\documentclass[14pt]{classPres}
|
||
|
\usepackage{tkz-fct}
|
||
|
\usepackage{pgfplots}
|
||
|
\usetikzlibrary{decorations.markings}
|
||
|
\pgfplotsset{compat=1.18}
|
||
|
|
||
|
\author{}
|
||
|
\title{}
|
||
|
\date{}
|
||
|
|
||
|
\begin{document}
|
||
|
\begin{frame}{Questions flashs}
|
||
|
\begin{center}
|
||
|
\vfill
|
||
|
Première ST
|
||
|
\vfill
|
||
|
30 secondes par calcul
|
||
|
\vfill
|
||
|
\tiny \jobname
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 1}
|
||
|
% Dérivation
|
||
|
Déterminer la fonction dérivée de
|
||
|
\[
|
||
|
f(x) = -5x + x^2 - 10
|
||
|
\]
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 2}
|
||
|
% inéquations
|
||
|
Résoudre l'équation suivante
|
||
|
\[
|
||
|
6x - 15 \geq 5x
|
||
|
\]
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}[fragile]{Calcul 3}
|
||
|
% tableau signe et variations
|
||
|
On a fait le calcul suivant
|
||
|
\[
|
||
|
f(x) \geq 0 \qquad \cdots \qquad x \geq 10
|
||
|
\]
|
||
|
\vfill
|
||
|
Tracer le tableur de signe de $f(x)$ correspondant.
|
||
|
\vfill
|
||
|
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}[fragile]{Calcul 4}
|
||
|
Calculer la probabilité $P(C\; \overline{C}\; \overline{C})$
|
||
|
\begin{center}
|
||
|
\begin{tikzpicture}[grow=down, sloped, scale=1]
|
||
|
\tikzset{level 1/.style={sibling distance=6cm}}
|
||
|
\tikzset{level 2/.style={sibling distance=3cm}}
|
||
|
\tikzset{level 3/.style={sibling distance=1.5cm}}
|
||
|
|
||
|
\node {.}
|
||
|
child {node {C}
|
||
|
child {node {C}
|
||
|
child {node {C}
|
||
|
edge from parent
|
||
|
node[above] {0.6}
|
||
|
}
|
||
|
child {node {$\overline{C}$}
|
||
|
edge from parent
|
||
|
node[above] {0.4}
|
||
|
}
|
||
|
edge from parent
|
||
|
node[above] {0.6}
|
||
|
}
|
||
|
child {node {$\overline{C}$}
|
||
|
child {node {C}
|
||
|
edge from parent
|
||
|
node[above] {0.6}
|
||
|
}
|
||
|
child {node {$\overline{C}$}
|
||
|
edge from parent
|
||
|
node[above] {0.4}
|
||
|
}
|
||
|
edge from parent
|
||
|
node[above] {0.4}
|
||
|
}
|
||
|
edge from parent
|
||
|
node[above] {0.6}
|
||
|
}
|
||
|
child { node {$\overline{C}$}
|
||
|
child {node {C}
|
||
|
child {node {C}
|
||
|
edge from parent
|
||
|
node[above] {0.6}
|
||
|
}
|
||
|
child {node {$\overline{C}$}
|
||
|
edge from parent
|
||
|
node[above] {0.4}
|
||
|
}
|
||
|
edge from parent
|
||
|
node[above] {0.6}
|
||
|
}
|
||
|
child {node {$\overline{C}$}
|
||
|
child {node {C}
|
||
|
edge from parent
|
||
|
node[above] {0.6}
|
||
|
}
|
||
|
child {node {$\overline{C}$}
|
||
|
edge from parent
|
||
|
node[above] {0.4}
|
||
|
}
|
||
|
edge from parent
|
||
|
node[above] {0.4}
|
||
|
}
|
||
|
edge from parent
|
||
|
node[above] {0.4}
|
||
|
}%
|
||
|
;
|
||
|
\end{tikzpicture}
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Fin}
|
||
|
\begin{center}
|
||
|
On retourne son papier.
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\end{document}
|