Feat(1ST): QF pour S05
All checks were successful
continuous-integration/drone/push Build is passing

This commit is contained in:
Bertrand Benjamin 2023-01-27 09:38:00 +01:00
parent dd80473548
commit 8583d4efab
4 changed files with 256 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,128 @@
\documentclass[14pt]{classPres}
\usepackage{tkz-fct}
\usepackage{pgfplots}
\usetikzlibrary{decorations.markings}
\pgfplotsset{compat=1.18}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
% Dérivation
Déterminer la fonction dérivée de
\[
f(x) = 9x^2 - 10 + 5x
\]
\end{frame}
\begin{frame}{Calcul 2}
% inéquations
Résoudre l'équation suivante
\[
5x - 15 \geq 5
\]
\end{frame}
\begin{frame}[fragile]{Calcul 3}
% tableau signe et variations
On a fait le calcul suivant
\[
f(x) \geq 0 \qquad \cdots \qquad x \leq 5
\]
\vfill
Tracer le tableur de signe de $f(x)$ correspondant.
\vfill
\end{frame}
\begin{frame}[fragile]{Calcul 4}
Calculer la probabilité $P(CCC)$
\begin{center}
\begin{tikzpicture}[grow=down, sloped, scale=1]
\tikzset{level 1/.style={sibling distance=6cm}}
\tikzset{level 2/.style={sibling distance=3cm}}
\tikzset{level 3/.style={sibling distance=1.5cm}}
\node {.}
child {node {C}
child {node {C}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.6}
}
child { node {$\overline{C}$}
child {node {C}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.4}
}%
;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@ -0,0 +1,128 @@
\documentclass[14pt]{classPres}
\usepackage{tkz-fct}
\usepackage{pgfplots}
\usetikzlibrary{decorations.markings}
\pgfplotsset{compat=1.18}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
% Dérivation
Déterminer la fonction dérivée de
\[
f(x) = -5x + x^2 - 10
\]
\end{frame}
\begin{frame}{Calcul 2}
% inéquations
Résoudre l'équation suivante
\[
6x - 15 \geq 5x
\]
\end{frame}
\begin{frame}[fragile]{Calcul 3}
% tableau signe et variations
On a fait le calcul suivant
\[
f(x) \geq 0 \qquad \cdots \qquad x \geq 10
\]
\vfill
Tracer le tableur de signe de $f(x)$ correspondant.
\vfill
\end{frame}
\begin{frame}[fragile]{Calcul 4}
Calculer la probabilité $P(C\; \overline{C}\; \overline{C})$
\begin{center}
\begin{tikzpicture}[grow=down, sloped, scale=1]
\tikzset{level 1/.style={sibling distance=6cm}}
\tikzset{level 2/.style={sibling distance=3cm}}
\tikzset{level 3/.style={sibling distance=1.5cm}}
\node {.}
child {node {C}
child {node {C}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.6}
}
child { node {$\overline{C}$}
child {node {C}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.4}
}%
;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}