Feat(1ST): QF sur S9
All checks were successful
continuous-integration/drone/push Build is passing

This commit is contained in:
Bertrand Benjamin 2023-02-24 09:53:32 +01:00
parent 669b3bc79b
commit 0544428480
4 changed files with 274 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,137 @@
\documentclass[12pt]{classPres}
\usepackage{tkz-fct}
\usepackage{pgfplots}
\usetikzlibrary{decorations.markings}
\pgfplotsset{compat=1.18}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST
\vfill
30 secondes par calcul
\vfill
\textbf{Calculatrice autorisée}
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
% Développer
Développer l'expression suivante
\[
(3x - 2)(x - 1) =
\]
\end{frame}
\begin{frame}{Calcul 2}
% tableau signe et variations
On a fait le calcul suivant
\[
f'(x) \geq 0 \qquad \cdots \qquad x \leq 1
\]
\vfill
Tracer le tableur de signe de $f(x)$ correspondant.
\vfill
\begin{center}
\small
\begin{tikzpicture}
\tkzTabInit[lgt=3,espcl=6]{$x$/1,Signe de $f'(x)$/2, Variations de $f(x)$/2}{\hspace{5cm}, \hspace{5cm}}%
\tkzTabLine{,,}%
\tkzTabVar{,}%
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 3}
% probabilité
Calculer la probabilité $P(\mbox{avoir deux } C \mbox{ et un} \overline{C})$
\begin{center}
\begin{tikzpicture}[grow=down, sloped, scale=1]
\tikzset{level 1/.style={sibling distance=6cm}}
\tikzset{level 2/.style={sibling distance=3cm}}
\tikzset{level 3/.style={sibling distance=1.5cm}}
\node {.}
child {node {C}
child {node {C}
child {node {C}
edge from parent
node[above] {0.8}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.2}
}
edge from parent
node[above] {0.8}
}
child {node {$\overline{C}$}
child {node {C}
edge from parent
node[above] {0.8}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.2}
}
edge from parent
node[above] {0.2}
}
edge from parent
node[above] {0.8}
}
child { node {$\overline{C}$}
child {node {C}
child {node {C}
edge from parent
node[above] {0.8}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.2}
}
edge from parent
node[above] {0.8}
}
child {node {$\overline{C}$}
child {node {C}
edge from parent
node[above] {0.8}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.2}
}
edge from parent
node[above] {0.2}
}
edge from parent
node[above] {0.2}
}%
;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 4}
% Taux évo invers
\vfill
Une quantité vaut 100 après une augmentation de 10\%. Quelle était la valeur avant cette augmentation ?
\vfill
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@ -0,0 +1,137 @@
\documentclass[12pt]{classPres}
\usepackage{tkz-fct}
\usepackage{pgfplots}
\usetikzlibrary{decorations.markings}
\pgfplotsset{compat=1.18}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST
\vfill
30 secondes par calcul
\vfill
\textbf{Calculatrice autorisée}
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
% Développer
Développer l'expression suivante
\[
(1 - 2x)(4x - 1) =
\]
\end{frame}
\begin{frame}{Calcul 2}
% tableau signe et variations
On a fait le calcul suivant
\[
f'(x) \geq 0 \qquad \cdots \qquad x \leq -10
\]
\vfill
Tracer le tableur de signe de $f(x)$ correspondant.
\vfill
\begin{center}
\small
\begin{tikzpicture}
\tkzTabInit[lgt=3,espcl=6]{$x$/1,Signe de $f'(x)$/2, Variations de $f(x)$/2}{\hspace{5cm}, \hspace{5cm}}%
\tkzTabLine{,,}%
\tkzTabVar{,}%
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 3}
% probabilité
Calculer la probabilité $P(\mbox{2 ou plus } C)$
\begin{center}
\begin{tikzpicture}[grow=down, sloped, scale=1]
\tikzset{level 1/.style={sibling distance=6cm}}
\tikzset{level 2/.style={sibling distance=3cm}}
\tikzset{level 3/.style={sibling distance=1.5cm}}
\node {.}
child {node {C}
child {node {C}
child {node {C}
edge from parent
node[above] {0.8}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.2}
}
edge from parent
node[above] {0.8}
}
child {node {$\overline{C}$}
child {node {C}
edge from parent
node[above] {0.8}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.2}
}
edge from parent
node[above] {0.2}
}
edge from parent
node[above] {0.8}
}
child { node {$\overline{C}$}
child {node {C}
child {node {C}
edge from parent
node[above] {0.8}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.2}
}
edge from parent
node[above] {0.8}
}
child {node {$\overline{C}$}
child {node {C}
edge from parent
node[above] {0.8}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.2}
}
edge from parent
node[above] {0.2}
}
edge from parent
node[above] {0.2}
}%
;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 4}
% Taux évo invers
\vfill
Une quantité vaut 60 après une augmentation de 20\%. Quelle était la valeur avant cette augmentation ?
\vfill
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}