This commit is contained in:
parent
a19024f59c
commit
48f5f2f87e
BIN
2nd/Questions_flashs/P5/QF_S19-1.pdf
Normal file
BIN
2nd/Questions_flashs/P5/QF_S19-1.pdf
Normal file
Binary file not shown.
70
2nd/Questions_flashs/P5/QF_S19-1.tex
Executable file
70
2nd/Questions_flashs/P5/QF_S19-1.tex
Executable file
@ -0,0 +1,70 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
\usepackage{minted}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
2nd
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
% Intervalle
|
||||
En utilisant le tableau de signes suivant, résoudre l'inéquation
|
||||
|
||||
\[
|
||||
f(x) \leq 0
|
||||
\]
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[baseline=(a.north)]
|
||||
\tkzTabInit[lgt=2,espcl=2]{$ x $/1,$ f(x) $/1}{$-\infty$, 4 , 20, $+\infty$}
|
||||
\tkzTabLine{, +, z, -, z, + , }
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 2}
|
||||
% Droite
|
||||
\vfill
|
||||
Soit $(a)$ la droite d'équation $y = 5x + 1$.
|
||||
\vfill
|
||||
Déterminer si le point $A(2; 11)$ est un point de la droite?
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 3}
|
||||
% Droite
|
||||
\vfill
|
||||
Soit $(a)$ la droite d'équation $y = -3x + 10$.
|
||||
\vfill
|
||||
Déterminer la valeur de $y$ pour que le point $M(2; y)$ soit sur cette droite.
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 4}
|
||||
\vfill
|
||||
Soient $A(4; 3)$ et $B(7; -1)$.
|
||||
\vfill
|
||||
Calculer la distance $AB$.
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user