Feat(1ST): QF pour S04
This commit is contained in:
parent
e98a9ee21f
commit
4a6021fd98
BIN
1ST/Questions_flashs/P3/QF_S04-1.pdf
Normal file
BIN
1ST/Questions_flashs/P3/QF_S04-1.pdf
Normal file
Binary file not shown.
101
1ST/Questions_flashs/P3/QF_S04-1.tex
Executable file
101
1ST/Questions_flashs/P3/QF_S04-1.tex
Executable file
@ -0,0 +1,101 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
\usepackage{pgfplots}
|
||||
\usetikzlibrary{decorations.markings}
|
||||
\pgfplotsset{compat=1.18}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Première ST
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
% Dérivation
|
||||
Déterminer la fonction dérivée de
|
||||
\[
|
||||
f(x) = 7x^2 - 10
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
% inéquations
|
||||
Résoudre l'équation suivante
|
||||
\[
|
||||
2x - 50 \geq 0
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 3}
|
||||
% tableau signe et variations
|
||||
Compléter le tableau de signe de la fonction suivante
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
axis lines = center,
|
||||
grid = both,
|
||||
xlabel = {x},
|
||||
xtick distance=1,
|
||||
ylabel = {$f(x)$},
|
||||
ytick distance=1,
|
||||
ymin = -2,
|
||||
]
|
||||
\addplot[domain=-2:2,samples=20, color=red, very thick]{x*x - 1};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 4}
|
||||
Calculer la probabilité $P(CC)$
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[grow=down, sloped, scale=1.5]
|
||||
\node {.}
|
||||
child {node {C}
|
||||
child {node {C}
|
||||
edge from parent
|
||||
node[above] {0.6}
|
||||
}
|
||||
child {node {$\overline{C}$}
|
||||
edge from parent
|
||||
node[above] {0.4}
|
||||
}
|
||||
edge from parent
|
||||
node[above] {0.6}
|
||||
}
|
||||
child[missing] {}
|
||||
child { node {$\overline{C}$}
|
||||
child {node {C}
|
||||
edge from parent
|
||||
node[above] {0.6}
|
||||
}
|
||||
child {node {$\overline{C}$}
|
||||
edge from parent
|
||||
node[above] {0.4}
|
||||
}
|
||||
edge from parent
|
||||
node[above] {0.4}
|
||||
}%
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
1ST/Questions_flashs/P3/QF_S04-2.pdf
Normal file
BIN
1ST/Questions_flashs/P3/QF_S04-2.pdf
Normal file
Binary file not shown.
100
1ST/Questions_flashs/P3/QF_S04-2.tex
Executable file
100
1ST/Questions_flashs/P3/QF_S04-2.tex
Executable file
@ -0,0 +1,100 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
\usepackage{pgfplots}
|
||||
\usetikzlibrary{decorations.markings}
|
||||
\pgfplotsset{compat=1.18}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Première ST
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
% Dérivation
|
||||
Déterminer la fonction dérivée de
|
||||
\[
|
||||
f(x) = 4 - 2x + 6x^2
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
% inéquations
|
||||
Résoudre l'équation suivante
|
||||
\[
|
||||
-4x + 12 \geq 0
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 3}
|
||||
% tableau signe et variations
|
||||
Compléter le tableau de signe de la fonction suivante
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
axis lines = center,
|
||||
grid = both,
|
||||
xlabel = {x},
|
||||
xtick distance=1,
|
||||
ylabel = {$f(x)$},
|
||||
ytick distance=1,
|
||||
]
|
||||
\addplot[domain=-3:2,samples=20, color=red, very thick]{(x-1)*(x+2)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 4}
|
||||
Calculer la probabilité $P(C\overline{C})$
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[grow=down, sloped, scale=1.5]
|
||||
\node {.}
|
||||
child {node {C}
|
||||
child {node {C}
|
||||
edge from parent
|
||||
node[above] {0.6}
|
||||
}
|
||||
child {node {$\overline{C}$}
|
||||
edge from parent
|
||||
node[above] {0.4}
|
||||
}
|
||||
edge from parent
|
||||
node[above] {0.6}
|
||||
}
|
||||
child[missing] {}
|
||||
child { node {$\overline{C}$}
|
||||
child {node {C}
|
||||
edge from parent
|
||||
node[above] {0.6}
|
||||
}
|
||||
child {node {$\overline{C}$}
|
||||
edge from parent
|
||||
node[above] {0.4}
|
||||
}
|
||||
edge from parent
|
||||
node[above] {0.4}
|
||||
}%
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
1ST/Questions_flashs/P3/QF_S04-3.pdf
Normal file
BIN
1ST/Questions_flashs/P3/QF_S04-3.pdf
Normal file
Binary file not shown.
100
1ST/Questions_flashs/P3/QF_S04-3.tex
Executable file
100
1ST/Questions_flashs/P3/QF_S04-3.tex
Executable file
@ -0,0 +1,100 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
\usepackage{pgfplots}
|
||||
\usetikzlibrary{decorations.markings}
|
||||
\pgfplotsset{compat=1.18}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Première ST
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
% Dérivation
|
||||
Déterminer la fonction dérivée de
|
||||
\[
|
||||
f(x) = - 10x + x^2
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
% inéquations
|
||||
Résoudre l'équation suivante
|
||||
\[
|
||||
-2x + 10 \geq 0
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 3}
|
||||
% tableau signe et variations
|
||||
Compléter le tableau de signe de la fonction suivante
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
axis lines = center,
|
||||
grid = both,
|
||||
xlabel = {x},
|
||||
xtick distance=1,
|
||||
ylabel = {$f(x)$},
|
||||
ytick distance=1,
|
||||
]
|
||||
\addplot[domain=-3:2,samples=20, color=red, very thick]{-(x-1)*(x+2)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 4}
|
||||
Calculer la probabilité $P(\mbox{avoir un seul C})$
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[grow=down, sloped, scale=1.5]
|
||||
\node {.}
|
||||
child {node {C}
|
||||
child {node {C}
|
||||
edge from parent
|
||||
node[above] {0.6}
|
||||
}
|
||||
child {node {$\overline{C}$}
|
||||
edge from parent
|
||||
node[above] {0.4}
|
||||
}
|
||||
edge from parent
|
||||
node[above] {0.6}
|
||||
}
|
||||
child[missing] {}
|
||||
child { node {$\overline{C}$}
|
||||
child {node {C}
|
||||
edge from parent
|
||||
node[above] {0.6}
|
||||
}
|
||||
child {node {$\overline{C}$}
|
||||
edge from parent
|
||||
node[above] {0.4}
|
||||
}
|
||||
edge from parent
|
||||
node[above] {0.4}
|
||||
}%
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user