Feat: fin des exercices sur la tangente pour les 1ST
All checks were successful
continuous-integration/drone/push Build is passing

This commit is contained in:
Bertrand Benjamin 2022-11-14 11:06:22 +01:00
parent ddbd6a8cbf
commit af582621e6
5 changed files with 271 additions and 45 deletions

View File

@ -31,7 +31,6 @@
Rapport (vertical sur horizontal) & & & & \\ Rapport (vertical sur horizontal) & & & & \\
\hline \hline
\end{tabular} \end{tabular}
\end{annexe} \end{annexe}
@ -170,6 +169,12 @@
\begin{exercise}[subtitle={Tracer des tangentes}, step={2}, origin={ma tête}, topics={ Nombre dérivé et tangente }, tags={ Dérivation }, mode={\trainMode}] \begin{exercise}[subtitle={Tracer des tangentes}, step={2}, origin={ma tête}, topics={ Nombre dérivé et tangente }, tags={ Dérivation }, mode={\trainMode}]
Tracer les tangentes aux points marqués sur les graphiques Tracer les tangentes aux points marqués sur les graphiques
\pgfkeys{tikz/.cd}
\tikzset{tangent/.style={black,thick},
tangent at/.style={postaction={decorate,decoration={markings,
mark=at position #1 with {\fill[tangent] (axis direction cs:0,0) circle (2pt);}
}}},
}
\begin{minipage}{0.5\linewidth} \begin{minipage}{0.5\linewidth}
\begin{tikzpicture} \begin{tikzpicture}
\begin{axis}[ \begin{axis}[
@ -182,10 +187,7 @@
ymin = 0, ymin = 0,
ymax = 11, ymax = 11,
] ]
\addplot[domain=0:5,samples=20, color=red, very thick]{(x-3)^2 + 1}; \addplot[tangent at/.list={0.29,0.645,0.795},domain=0:5,samples=20, color=red, very thick]{(x-3)^2 + 1};
\addplot [black, mark=*, very thick, only marks] coordinates {(3,1)};
\addplot [black, mark=*, very thick, only marks] coordinates {(1,5)};
\addplot [black, mark=*, very thick, only marks] coordinates {(4,2)};
\end{axis} \end{axis}
\end{tikzpicture} \end{tikzpicture}
\end{minipage} \end{minipage}
@ -198,18 +200,56 @@
xtick distance=1, xtick distance=1,
ylabel = {$f(x)$}, ylabel = {$f(x)$},
ytick distance=1, ytick distance=1,
ymin = -6,
ymax = 6,
] ]
\addplot[domain=-2:2,samples=50, color=red, very thick]{sin(deg(x*pi/2))*5}; \addplot[domain=-2:2,samples=50, color=red, very thick,tangent at/.list={0.25,0.5,0.865}]{sin(deg(x*pi/2))*5};
\addplot [black, mark=*, very thick, only marks] coordinates {(-1,-5)};
\addplot [black, mark=*, very thick, only marks] coordinates {(1.5,5*sin(deg(1.5*pi/2)))};
\addplot [black, mark=*, very thick, only marks] coordinates {(0,0)};
\end{axis} \end{axis}
\end{tikzpicture} \end{tikzpicture}
\end{minipage} \end{minipage}
\end{exercise} \end{exercise}
\begin{solution}
\pgfkeys{tikz/.cd,
tangent length/.store in=\TangentLength,
tangent length=30mm
}
\tikzset{tangent/.style={black,thick},
tangent at/.style={postaction={decorate,decoration={markings,
mark=at position #1 with {\draw[tangent] (axis direction cs:-\TangentLength,0) -- (axis direction cs:\TangentLength,0);
\fill[tangent] (axis direction cs:0,0) circle (2pt);}}}},
}
\begin{minipage}{0.5\linewidth}
\begin{tikzpicture}
\begin{axis}[
axis lines = center,
grid= both,
xlabel = {$x$},
xtick distance=1,
ylabel = {$f(x)$},
ytick distance=1,
ymin = 0,
ymax = 11,
]
\addplot[tangent at/.list={0.29,0.64,0.795},domain=0:5,samples=20, color=red, very thick]{(x-3)^2 + 1};
\end{axis}
\end{tikzpicture}
\end{minipage}
\begin{minipage}{0.5\linewidth}
\begin{tikzpicture}
\begin{axis}[
axis lines = center,
grid= both,
xlabel = {$x$},
xtick distance=1,
ylabel = {$f(x)$},
ytick distance=1,
ymin=-6, ymax=6,
]
\addplot[domain=-2:2,samples=50, color=red, very thick,tangent at/.list={0.24715,0.5,0.865}]{sin(deg(x*pi/2))*5};
\end{axis}
\end{tikzpicture}
\end{minipage}
\end{solution}
\begin{exercise}[subtitle={Tracer une courbe}, step={2}, origin={ma tête}, topics={ Nombre dérivé et tangente }, tags={ Dérivation }, mode={\trainMode}] \begin{exercise}[subtitle={Tracer une courbe}, step={2}, origin={ma tête}, topics={ Nombre dérivé et tangente }, tags={ Dérivation }, mode={\trainMode}]
\begin{multicols}{2} \begin{multicols}{2}
@ -227,11 +267,7 @@
ymin = -6, ymin = -6,
ymax = 6, ymax = 6,
] ]
\addplot [black, mark=*, very thick, only marks] coordinates {(-2,-3)}; \addplot [black, mark=*, very thick, only marks] coordinates {(-2,-3) (-1,-5) (0,0) (1.5,5) (2,2)};
\addplot [black, mark=*, very thick, only marks] coordinates {(-1,-5)};
\addplot [black, mark=*, very thick, only marks] coordinates {(0,0)};
\addplot [black, mark=*, very thick, only marks] coordinates {(1.5,5)};
\addplot [black, mark=*, very thick, only marks] coordinates {(2,2)};
\end{axis} \end{axis}
\end{tikzpicture} \end{tikzpicture}
@ -248,15 +284,11 @@
ymin = -6, ymin = -6,
ymax = 6, ymax = 6,
] ]
\addplot [black, mark=*, very thick, only marks] coordinates {(-2,-3)}; \addplot [black, mark=*, very thick, only marks] coordinates {(-2,-3) (-1,-5) (0,0) (1.5,5) (2,2)};
\addplot [mark=, very thick] coordinates {(-2,-3) (-1.8, -3.5)}; \addplot [mark=, very thick] coordinates {(-2,-3) (-1.8, -3.5)};
\addplot [black, mark=*, very thick, only marks] coordinates {(-1,-5)};
\addplot [mark=, very thick] coordinates {(-1.2,-5) (-0.8, -5)}; \addplot [mark=, very thick] coordinates {(-1.2,-5) (-0.8, -5)};
\addplot [black, mark=*, very thick, only marks] coordinates {(0,0)};
\addplot [mark=, very thick] coordinates {(-0.2,0) (0.2, 0)}; \addplot [mark=, very thick] coordinates {(-0.2,0) (0.2, 0)};
\addplot [black, mark=*, very thick, only marks] coordinates {(1.5,5)};
\addplot [mark=, very thick] coordinates {(1.3, 4.8) (1.7, 5.2)}; \addplot [mark=, very thick] coordinates {(1.3, 4.8) (1.7, 5.2)};
\addplot [black, mark=*, very thick, only marks] coordinates {(2,2)};
\addplot [mark=, very thick] coordinates {(1.8, 2) (2, 2)}; \addplot [mark=, very thick] coordinates {(1.8, 2) (2, 2)};
\end{axis} \end{axis}
\end{tikzpicture} \end{tikzpicture}
@ -319,13 +351,118 @@
\end{enumerate} \end{enumerate}
\end{exercise} \end{exercise}
\begin{solution}
\begin{multicols}{2}
\begin{enumerate}
\item
\begin{tikzpicture}
\begin{axis}[
axis lines = center,
grid= both,
xlabel = {$x$},
xtick distance=1,
ylabel = {$f(x)$},
ytick distance=1,
ymin = -6,
ymax = 6,
]
\addplot [black, mark=*, very thick] coordinates {(-2,-3) (-1,-5) (0,0) (1.5,5) (2,2)};
\end{axis}
\end{tikzpicture}
\item
\begin{tikzpicture}
\begin{axis}[
axis lines = center,
grid= both,
xlabel = {$x$},
xtick distance=1,
ylabel = {$f(x)$},
ytick distance=1,
ymin = -6,
ymax = 6,
]
\addplot [black, mark=*, very thick, only marks] coordinates {(-2,-3) (-1,-5) (0,0) (1.5,5) (2,2)};
\addplot [mark=, very thick] coordinates {(-2,-3) (-1.8, -3.5)};
\addplot [mark=, very thick] coordinates {(-1.2,-5) (-0.8, -5)};
\addplot [mark=, very thick] coordinates {(-0.2,0) (0.2, 0)};
\addplot [mark=, very thick] coordinates {(1.3, 4.8) (1.7, 5.2)};
\addplot [mark=, very thick] coordinates {(1.8, 2) (2, 2)};
\end{axis}
\end{tikzpicture}
\end{enumerate}
\end{multicols}
\begin{enumerate}
\setcounter{enumi}{2}
\item
Tracer une courbe qui respecte les points et les tangentes représentées dans les graphiques suivants.
\pgfkeys{tikz/.cd,
tangent length/.store in=\TangentLength,
tangent length=7mm
}
\tikzset{tangent/.style={black,thick},
tangent at/.style={postaction={decorate,decoration={markings,
mark=at position #1 with {\draw[tangent] (-\TangentLength,0) -- (\TangentLength,0);
\fill[tangent] (0,0) circle (2pt);}}}},
}
\begin{tikzpicture}[scale=1]
% Axes
\draw [-latex] (-0.5,0) -- (8,0) node [above] {$x$};
\draw [-latex] (0,-0.5) -- (0,4) node [right] {$y$};
% Origin
\node at (0,0) [below left] {$0$};
% Points
\coordinate (start) at (0,-0.8);
\coordinate (c1) at (3,3);
\coordinate (c2) at (5,1.5);
\coordinate (c3) at (6,4);
\coordinate (end) at (8,2);
% show the points
% \foreach \n in {start,c1,c2,c3,end} \fill [black] (\n)
% circle (2pt) node [below] {};
% join the coordinates
\draw [tangent at/.list={0.15,0.3,...,1}] (start) to[out=70,in=180] (c1) to[out=0,in=180]
(c2) to[out=0,in=180] (c3) to[out=0,in=150] (end);
\end{tikzpicture}
\hfill
\begin{tikzpicture}[scale=1]
% Axes
\draw [-latex] (-4,0) -- (4,0) node [above] {$x$};
\draw [-latex] (0,-3) -- (0,3) node [right] {$y$};
% Origin
\node at (0,0) [below left] {$0$};
% Points
\coordinate (start) at (-4,-1);
\coordinate (c1) at (-2,3);
\coordinate (c2) at (0,1);
\coordinate (c3) at (2,-2);
\coordinate (end) at (4,0);
% show the points
% \foreach \n in {start,c1,c2,c3,end} \fill [black] (\n)
% circle (2pt) node [below] {};
% join the coordinates
\draw [tangent at/.list={0.2,0.4,...,1}] (start) to[out=70,in=180] (c1) to[out=0,in=180]
(c2) to[out=0,in=180] (c3) to[out=0,in=150] (end);
\end{tikzpicture}
\end{enumerate}
\end{solution}
% Nombre dérivé et tangente % Nombre dérivé et tangente
\begin{exercise}[subtitle={Lire le nombre dérivé}, step={3}, origin={ma tête}, topics={ Nombre dérivé et tangente }, tags={ Dérivation }, mode={\trainMode}] \begin{exercise}[subtitle={Lire le nombre dérivé}, step={3}, origin={ma tête}, topics={ Nombre dérivé et tangente }, tags={ Dérivation }, mode={\trainMode}]
Sur les courbes suivantes, tracer les tangentes aux points puis lire graphiquement le nombre dérivé. Sur les courbes suivantes, tracer les tangentes aux points puis lire graphiquement le nombre dérivé.
Tracer les tangentes aux points marqués sur les graphiques
\pgfkeys{tikz/.cd}
\tikzset{tangent/.style={black,thick},
tangent at/.style={postaction={decorate,decoration={markings,
mark=at position #1 with {\fill[tangent] (axis direction cs:0,0) circle (2pt);}
}}},
}
\begin{minipage}{0.5\linewidth} \begin{minipage}{0.5\linewidth}
\begin{tikzpicture} \begin{tikzpicture}
\begin{axis}[ \begin{axis}[
@ -335,33 +472,115 @@
xtick distance=1, xtick distance=1,
ylabel = {$f(x)$}, ylabel = {$f(x)$},
ytick distance=1, ytick distance=1,
ymin=-2,
] ]
\addplot[domain=-4:2,samples=20, color=red, very thick]{0.1*(x+1)^3 + 1}; \addplot[tangent at/.list={0,0.29,0.78},domain=-4:4,samples=20, color=red, very thick]{0.1*(x+1)^3 + 1};
\addplot [black, mark=*, very thick, only marks] coordinates {(1,1)};
\addplot [black, mark=*, very thick, only marks] coordinates {(1,5)};
\addplot [black, mark=*, very thick, only marks] coordinates {(4,2)};
\end{axis} \end{axis}
\end{tikzpicture} \end{tikzpicture}
\end{minipage} \end{minipage}
\begin{minipage}{0.5\linewidth} \begin{minipage}{0.5\linewidth}
\begin{tikzpicture} \pgfkeys{tikz/.cd}
\begin{axis}[ \tikzset{tangent/.style={black,thick},
axis lines = center, tangent at/.style={postaction={decorate,decoration={markings,
grid= both, mark=at position #1 with {\fill[tangent] (0,0) circle (3pt);}
xlabel = {$x$}, }}},
xtick distance=1, }
ylabel = {$f(x)$}, \begin{tikzpicture}[xscale=0.5,yscale=0.8]
ytick distance=1, % Axes
] \draw [-latex, thick] (-0.5,0) -- (15,0) node [above] {$x$};
\addplot[domain=-2:2,samples=50, color=red, very thick]{sin(deg(x*pi/2))*2}; \draw [-latex, thick] (0,-3.5) -- (0,5) node [left] {$f(x)$};
\addplot [black, mark=*, very thick, only marks] coordinates {(-1,-2)}; \draw [very thin] (0,-3) grid (15,5);
\addplot [black, mark=*, very thick, only marks] coordinates {(1.5,2*sin(deg(1.5*pi/2)))}; % Origin
\addplot [black, mark=*, very thick, only marks] coordinates {(0,0)}; \node at (0,0) [below left] {$0$};
\end{axis} % Points
\coordinate (start) at (0,-3);
\coordinate (c1) at (3,0);
\coordinate (c2) at (7,4);
\coordinate (c3) at (11,1);
\coordinate (end) at (15,5);
\draw [tangent at/.list={0.21,0.49,0.72,1}] (start) to [out=0,in=225] (c1) to[out=45,in=180] (c2) to[out=0,in=180] (c3) to[out=0,in=225] (end);
\end{tikzpicture} \end{tikzpicture}
\end{minipage} \end{minipage}
\end{exercise} \end{exercise}
\begin{solution}
\pgfkeys{tikz/.cd}
\tikzset{tangent/.style={black,thick},
tangent at/.style={postaction={decorate,decoration={markings,
mark=at position #1 with {\fill[tangent] (axis direction cs:0,0) circle (2pt);}
}}},
}
\begin{minipage}{0.5\linewidth}
\begin{tikzpicture}
\begin{axis}[
axis lines = center,
grid= both,
xlabel = {$x$},
xtick distance=1,
ylabel = {$f(x)$},
ytick distance=1,
ymin=-2,
]
\addplot[tangent at/.list={0,0.29,0.78},domain=-4:4,samples=20, color=red, very thick]{0.1*(x+1)^3 + 1};
\end{axis}
\end{tikzpicture}
\end{minipage}
\begin{minipage}{0.5\linewidth}
\pgfkeys{tikz/.cd}
\tikzset{tangent/.style={black,thick},
tangent at/.style={postaction={decorate,decoration={markings,
mark=at position #1 with {\fill[tangent] (axis direction cs:0,0) circle (2pt);}
}}},
}
\begin{tikzpicture}[xscale=0.5,yscale=0.8]
% Axes
\draw [-latex, thick] (-0.5,0) -- (15,0) node [above] {$x$};
\draw [-latex, thick] (0,-3.5) -- (0,5) node [left] {$f(x)$};
\draw [very thin] (0,-3) grid (15,5);
% Origin
\node at (0,0) [below left] {$0$};
% Points
\coordinate (start) at (0,-3);
\coordinate (c1) at (3,0);
\coordinate (c2) at (7,4);
\coordinate (c3) at (11,1);
\coordinate (end) at (15,5);
\draw [tangent at/.list={0.21,0.49,0.72,1}] (start) to [out=0,in=225] (c1) to[out=45,in=180] (c2) to[out=0,in=180] (c3) to[out=0,in=225] (end);
\end{tikzpicture}
\end{minipage}
\end{solution}
\begin{exercise}[subtitle={Tracer la courbe avec les nombres dérivés}, step={3}, origin={ma tête}, topics={ Nombre dérivé et tangente }, tags={ Dérivation }, mode={\trainMode}] \begin{exercise}[subtitle={Tracer la courbe avec les nombres dérivés}, step={3}, origin={ma tête}, topics={ Nombre dérivé et tangente }, tags={ Dérivation }, mode={\trainMode}]
Pour chacun des tableaux ci-dessous, placer les points, puis tracer les tangentes et enfin tracer une courbe qui respecte les points et les tangentes.
\begin{multicols}{2}
\begin{enumerate}
\item
\begin{tabular}{|c|*{5}{c|}}
\hline
$x$ & -2 & -1 & 0 & 1 & 2\\
\hline
$f(x)$ & 3 & 1 & -1 & -3 & 1\\
\hline
$f'(x)$ & 0 & -1 & -1 & 0 & 0\\
\hline
\end{tabular}
\item
\begin{tabular}{|c|*{5}{c|}}
\hline
$x$ & -2 & -1 & 0 & 1 & 2\\
\hline
$g(x)$ & 0 & 2 & 4 & 0 & -3\\
\hline
$g'(x)$ & 2 & 1 & 0 & -2 & 0\\
\hline
\end{tabular}
\end{enumerate}
\end{multicols}
\begin{enumerate}
\item (*) Que peut-on des points où le nombre dérivé est nul?
\end{enumerate}
\end{exercise} \end{exercise}

View File

@ -2,6 +2,7 @@
\usepackage{myXsim} \usepackage{myXsim}
\usepackage{pgfplots} \usepackage{pgfplots}
\usetikzlibrary{decorations.markings} \usetikzlibrary{decorations.markings}
\pgfplotsset{compat=1.18}
\author{Benjamin Bertrand} \author{Benjamin Bertrand}
\title{Nombre dérivé et tangente - Plan de travail} \title{Nombre dérivé et tangente - Plan de travail}
@ -28,7 +29,6 @@ Savoir-faire de la séquence
\item Faire le lien entre le taux de variations et la pente de la droite passant par les points \item Faire le lien entre le taux de variations et la pente de la droite passant par les points
\item Construire une tangente à une courbe en un point \item Construire une tangente à une courbe en un point
\item Interpréter géométriquement le nombre dérivé comme coefficient directeur de la tangente. \item Interpréter géométriquement le nombre dérivé comme coefficient directeur de la tangente.
\item Déterminer léquation réduite de la tangente à une courbe en un point.
\end{itemize} \end{itemize}
\bigskip \bigskip
@ -45,12 +45,16 @@ Savoir-faire de la séquence
\listsectionexercises \listsectionexercises
\pagebreak \bigskip
\input{exercises.tex} \input{exercises.tex}
\printcollection{banque} \printcollection{banque}
\clearpage \bigskip
\hline
\bigskip
\printannexes \printannexes
\end{document} \end{document}

View File

@ -1,5 +1,8 @@
\documentclass[a4paper,10pt]{article} \documentclass[a4paper,12pt]{article}
\usepackage{myXsim} \usepackage{myXsim}
\usepackage{pgfplots}
\usetikzlibrary{decorations.markings}
\pgfplotsset{compat=1.18}
\usetikzlibrary{shapes.geometric} \usetikzlibrary{shapes.geometric}
@ -23,6 +26,6 @@
\input{exercises.tex} \input{exercises.tex}
%\printcollection{banque} %\printcollection{banque}
\printsolutions{exercises} %\printsolutions{exercises}
\end{document} \end{document}