Compare commits
No commits in common. "8848a46d99c53cefd34e884b6d597cd87e649c92" and "cd31d3293cefaceb84ba6105ee2585ee6bbd89eb" have entirely different histories.
8848a46d99
...
cd31d3293c
Binary file not shown.
@ -1,71 +0,0 @@
|
|||||||
\documentclass[12pt]{classPres}
|
|
||||||
\usepackage{tkz-fct}
|
|
||||||
\usepackage{pgfplots}
|
|
||||||
\usetikzlibrary{decorations.markings}
|
|
||||||
\pgfplotsset{compat=1.18}
|
|
||||||
|
|
||||||
\author{}
|
|
||||||
\title{}
|
|
||||||
\date{}
|
|
||||||
|
|
||||||
\begin{document}
|
|
||||||
\begin{frame}{Questions flashs}
|
|
||||||
\begin{center}
|
|
||||||
\vfill
|
|
||||||
Première ST
|
|
||||||
\vfill
|
|
||||||
30 secondes par calcul
|
|
||||||
\vfill
|
|
||||||
\textbf{Calculatrice non autorisée}
|
|
||||||
\vfill
|
|
||||||
\tiny \jobname
|
|
||||||
\end{center}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}{Calcul 1}
|
|
||||||
% Factorisation
|
|
||||||
\vfill
|
|
||||||
La fonction $f(x) = 3x^2 - 3x - 6$ a deux racines -1 et 2.
|
|
||||||
\vfill
|
|
||||||
Proposer une forme factorisée du polynôme $f$.
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}{Calcul 2}
|
|
||||||
% Dérivation
|
|
||||||
\vfill
|
|
||||||
Calculer la dérivée de la fonction
|
|
||||||
\[
|
|
||||||
f(x) = 5x^3 - x^2 + x - 1
|
|
||||||
\]
|
|
||||||
\vfill
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}[fragile]{Calcul 3}
|
|
||||||
% Développer
|
|
||||||
Développer l'expression suivante
|
|
||||||
\[
|
|
||||||
f(x) = 2(x-1)(x+2)
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}[fragile]{Calcul 4}
|
|
||||||
% poy deg 2
|
|
||||||
|
|
||||||
Quelle est l'allure de la représentation graphique de la fonction suivante
|
|
||||||
|
|
||||||
\[
|
|
||||||
f(x) = -2(x-3)(x+2)
|
|
||||||
\]
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}{Fin}
|
|
||||||
\begin{center}
|
|
||||||
On retourne son papier.
|
|
||||||
\end{center}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
|
Binary file not shown.
@ -1,71 +0,0 @@
|
|||||||
\documentclass[12pt]{classPres}
|
|
||||||
\usepackage{tkz-fct}
|
|
||||||
\usepackage{pgfplots}
|
|
||||||
\usetikzlibrary{decorations.markings}
|
|
||||||
\pgfplotsset{compat=1.18}
|
|
||||||
|
|
||||||
\author{}
|
|
||||||
\title{}
|
|
||||||
\date{}
|
|
||||||
|
|
||||||
\begin{document}
|
|
||||||
\begin{frame}{Questions flashs}
|
|
||||||
\begin{center}
|
|
||||||
\vfill
|
|
||||||
Première ST
|
|
||||||
\vfill
|
|
||||||
30 secondes par calcul
|
|
||||||
\vfill
|
|
||||||
\textbf{Calculatrice non autorisée}
|
|
||||||
\vfill
|
|
||||||
\tiny \jobname
|
|
||||||
\end{center}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}{Calcul 1}
|
|
||||||
% Factorisation
|
|
||||||
\vfill
|
|
||||||
La fonction $f(x) = -3x^2 + 18x - 15$ a deux racines 5 et 1.
|
|
||||||
\vfill
|
|
||||||
Proposer une forme factorisée du polynôme $f$.
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}{Calcul 2}
|
|
||||||
% Dérivation
|
|
||||||
\vfill
|
|
||||||
Calculer la dérivée de la fonction
|
|
||||||
\[
|
|
||||||
f(x) = 0.2x^3 - 10x^2 + 0.1x
|
|
||||||
\]
|
|
||||||
\vfill
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}[fragile]{Calcul 3}
|
|
||||||
% Développer
|
|
||||||
Développer l'expression suivante
|
|
||||||
\[
|
|
||||||
f(x) = 5(x-2)(x+10)
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}[fragile]{Calcul 4}
|
|
||||||
% poy deg 2
|
|
||||||
|
|
||||||
Quelle est l'allure de la représentation graphique de la fonction suivante
|
|
||||||
|
|
||||||
\[
|
|
||||||
f(x) = 5(x-2)(x+1)
|
|
||||||
\]
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}{Fin}
|
|
||||||
\begin{center}
|
|
||||||
On retourne son papier.
|
|
||||||
\end{center}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
|
Binary file not shown.
@ -1,71 +0,0 @@
|
|||||||
\documentclass[12pt]{classPres}
|
|
||||||
\usepackage{tkz-fct}
|
|
||||||
\usepackage{pgfplots}
|
|
||||||
\usetikzlibrary{decorations.markings}
|
|
||||||
\pgfplotsset{compat=1.18}
|
|
||||||
|
|
||||||
\author{}
|
|
||||||
\title{}
|
|
||||||
\date{}
|
|
||||||
|
|
||||||
\begin{document}
|
|
||||||
\begin{frame}{Questions flashs}
|
|
||||||
\begin{center}
|
|
||||||
\vfill
|
|
||||||
Première ST
|
|
||||||
\vfill
|
|
||||||
30 secondes par calcul
|
|
||||||
\vfill
|
|
||||||
\textbf{Calculatrice non autorisée}
|
|
||||||
\vfill
|
|
||||||
\tiny \jobname
|
|
||||||
\end{center}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}{Calcul 1}
|
|
||||||
% Factorisation
|
|
||||||
\vfill
|
|
||||||
La fonction $f(x) = 3x^2 + 12x + 12$ a une racine -2.
|
|
||||||
\vfill
|
|
||||||
Proposer une forme factorisée du polynôme $f$.
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}{Calcul 2}
|
|
||||||
% Dérivation
|
|
||||||
\vfill
|
|
||||||
Calculer la dérivée de la fonction
|
|
||||||
\[
|
|
||||||
f(x) = 0.2x - 10x^3 + 0.1
|
|
||||||
\]
|
|
||||||
\vfill
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}[fragile]{Calcul 3}
|
|
||||||
% Développer
|
|
||||||
Développer l'expression suivante
|
|
||||||
\[
|
|
||||||
f(x) = 5(x+2)(x-2)
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}[fragile]{Calcul 4}
|
|
||||||
% poy deg 2
|
|
||||||
|
|
||||||
Quelle est l'allure de la représentation graphique de la fonction suivante
|
|
||||||
|
|
||||||
\[
|
|
||||||
f(x) = -3(x-2)(x+2)
|
|
||||||
\]
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}{Fin}
|
|
||||||
\begin{center}
|
|
||||||
On retourne son papier.
|
|
||||||
\end{center}
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
|
Binary file not shown.
@ -25,7 +25,7 @@
|
|||||||
\hline
|
\hline
|
||||||
Valeurs & 2 & 4 & 8 & 16 & 20\\
|
Valeurs & 2 & 4 & 8 & 16 & 20\\
|
||||||
\hline
|
\hline
|
||||||
Effectif & 11 & 3 & 16 & 4 & 12\\
|
Effectif & 12 & 3 & 16 & 4 & 10\\
|
||||||
\hline
|
\hline
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
\end{center}
|
\end{center}
|
||||||
@ -48,7 +48,7 @@
|
|||||||
\begin{frame}[fragile]{Calcul 3}
|
\begin{frame}[fragile]{Calcul 3}
|
||||||
% Géométrie repérée
|
% Géométrie repérée
|
||||||
\vfill
|
\vfill
|
||||||
Soit $V(-6; 4)$ et $U(-2; 2)$ deux points.
|
Soit $V(-6; 4)$ et $U(-2; 1)$ deux points.
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
Calculer les coordonnées du milieu de $[UV]$.
|
Calculer les coordonnées du milieu de $[UV]$.
|
||||||
|
Loading…
Reference in New Issue
Block a user