Bopytex/example/tpl_example.tex

109 lines
2.7 KiB
TeX
Raw Normal View History

2014-12-19 06:59:26 +00:00
\documentclass[a4paper,10pt]{article}
\usepackage[utf8x]{inputenc}
\usepackage[francais]{babel}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% Title Page
2014-12-19 06:59:26 +00:00
\title{Jouons avec DS\_géné et pyMath}
% \quatreC \quatreD \troisB \troisPro
2014-12-19 06:59:26 +00:00
\date{}
\begin{document}
\maketitle
<<<<<<< HEAD
2014-12-19 06:59:26 +00:00
\section{Exercice de simplification de fraction}
\Block{do RdExpression.set_form("exp")}
\Block{set A = RdExpression("{a}/2+2")()}
\Block{set B = RdExpression("{a}/2+2")()}
Développer et réduire les expressions suivantes:
2014-12-19 06:59:26 +00:00
\begin{equation*}
2014-12-19 06:59:26 +00:00
A = \Var{ A } \qquad
B = \Var{ B }
\end{equation*}
Solutions:
\Var{A.simplify() | calculus}
\Var{B.simplify() | calculus(name = "B")}
2014-12-19 06:59:26 +00:00
\section{Mettre sous forme canonique}
\Block{set P = RdExpression("{a}x^2 + {b}x + {c}")()}
Mettre $\Var{P}$ sous la forme canonique.
Solution:
On simplifie le polynôme:
\begin{eqnarray*}
\Var{P.simplify() | calculus(name = "P(x) = ")}
\end{eqnarray*}
Calcul des coordonnées du sommet de la courbe:
\begin{eqnarray*}
\alpha & = & \frac{-b}{2a} = \\
\beta & = & -\frac{b^2 - 4ac}{4a} =
\end{eqnarray*}
=======
\Calc
Le barème est donné à titre indicatif, il pourra être modifié.
\begin{Exo}[4.5]
2015-01-06 08:22:52 +00:00
\Block{set A = Expression.random("{a} / 2 + 2")}
\Block{set P = Polynom.random(["{b}","{a}"])}
\Block{set Q = Polynom.random(["{b+2}","{a}"])}
\Block{set R = P('x')*Q('x') }
Développer et réduire les expressions suivantes:
2015-01-06 08:22:52 +00:00
\begin{eqnarray*}
A &=& \Var{ A } \\
P(x) &=& \Var{ P } \\
Q(x) &=& \Var{ Q }\\
R(x) &=& \Var{R}
\end{eqnarray*}
Solutions:
\Var{A.simplify() | calculus}
2015-01-06 08:22:52 +00:00
\Var{P(2).simplify() | calculus(name = "P(2)")}
\Var{Q(2).simplify() | calculus(name = "Q(2)")}
\Var{(P+Q) | calculus(name = "P(x) + Q(X)")}
\Var{(P('x')+Q('x')).simplify() | calculus(name = "P(x) + Q(X)")}
\Var{R.simplify() | calculus(name = "R(x)")}
2014-11-21 16:20:04 +00:00
\end{Exo}
2015-01-06 08:22:52 +00:00
\begin{Exo}
\Block{set P = Polynom.random(["{a}", "{b}", "{c}"])}
Résoudre l'équation suivante
\begin{eqnarray*}
\Var{P} & = & 0
\end{eqnarray*}
Solution:
On commence par calculer le discriminant
\begin{eqnarray*}
\Delta & = & b^2-4ac
\end{eqnarray*}
\Block{set Delta = Expression("{b}^2 - 4*{a}*{c}".format(a = P._coef[2], b = P._coef[1], c = P._coef[0]))}
\Var{Delta.simplify()|calculus(name="\\Delta")}
\Block{set Delta = Delta.simplified()}
Alors $\Delta = \Var{Delta}$
\end{Exo}
>>>>>>> origin/dev
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End:
2014-11-21 16:20:04 +00:00