Feat: clean repository

This commit is contained in:
2022-04-08 19:34:22 +02:00
parent 5f0fc8bc42
commit ce98f46bca
8 changed files with 0 additions and 367 deletions

View File

@@ -1,10 +1,6 @@
#!/usr/bin/env python
# encoding: utf-8
#from .bopytex import subject_metadatas, crazy_feed, pdfjoin
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:

View File

@@ -1,33 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
"""
Custom filter for Bopytex
"""
__all__ = ["do_calculus"]
def do_calculus(steps, name="A", sep="=", end="", joining=" \\\\ \n"):
"""Display properly the calculus
Generate this form string:
"name & sep & a_step end joining"
:param steps: list of steps
:returns: latex string ready to be endbeded
"""
ans = joining.join([
name + " & "
+ sep + " & "
+ str(s) + end for s in steps
])
return ans
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

View File

@@ -1,38 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
from random import randint
def pythagore_triplet(v_min = 1, v_max = 10):
"""Random pythagore triplet generator
:param v_min: minimum in randint
:param v_max: max in randint
:returns: (a,b,c) such that a^2 + b^2 = c^2
"""
u = randint(v_min,v_max)
v = randint(v_min,v_max)
while v == u:
v = randint(v_min,v_max)
u, v = max(u,v), min(u,v)
return (u**2-v**2 , 2*u*v, u**2 + v**2)
if __name__ == '__main__':
print(pythagore_triplet())
for j in range(1,10):
for i in range(j,10):
print((i**2-j**2 , 2*i*j, i**2 + j**2))
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

View File

@@ -1,33 +0,0 @@
\Block{macro solveEquation(P)}
On commence par calculer le discriminant de $P(x) = \Var{P}$.
\begin{eqnarray*}
\Delta & = & b^2-4ac \\
\Var{P.delta.explain()|calculus(name="\\Delta")}
\end{eqnarray*}
\Block{if P.delta > 0}
comme $\Delta = \Var{P.delta} > 0$ donc $P$ a deux racines
\begin{eqnarray*}
x_1 & = & \frac{-b - \sqrt{\Delta}}{2a} = \frac{\Var{-P.b} - \sqrt{\Var{P.delta}}}{2 \times \Var{P.a}} = \Var{P.roots()[0] } \\
x_2 & = & \frac{-b + \sqrt{\Delta}}{2a} = \frac{\Var{-P.b} + \sqrt{\Var{P.delta}}}{2 \times \Var{P.a}} = \Var{P.roots()[1] }
\end{eqnarray*}
Les solutions de l'équation $\Var{P} = 0$ sont donc $\mathcal{S} = \left\{ \Var{P.roots()[0]}; \Var{P.roots()[1]} \right\}$
\Block{elif P.delta == 0}
Comme $\Delta = 0$ donc $P$ a une racine
\begin{eqnarray*}
x_1 = \frac{-b}{2a} = \frac{-\Var{P.b}}{2\times \Var{P.a}} = \Var{P.roots()[0]} \\
\end{eqnarray*}
La solution de $\Var{P} = 0$ est donc $\mathcal{S} = \left\{ \Var{P.roots()[0]}\right\}$
\Block{else}
Alors $\Delta = \Var{P.delta} < 0$ donc $P$ n'a pas de racine donc l'équation $\Var{P} = 0$ n'a pas de solution.
\Block{endif}
\Block{endmacro}