Feat: RandomTree, rename generate function ...
This commit is contained in:
parent
1672530179
commit
204c7dffd7
@ -1,7 +1,7 @@
|
||||
#!/usr/bin/env python
|
||||
# encoding: utf-8
|
||||
|
||||
from .calculus import Expression, Integer, Decimal, random_list, render, Polynomial, Fraction
|
||||
from .calculus import Expression, Integer, Decimal, render, Polynomial, Fraction#, random_list,
|
||||
|
||||
# Expression.set_render('tex')
|
||||
|
||||
|
@ -12,13 +12,6 @@ Expression
|
||||
"""
|
||||
from functools import partial
|
||||
from ..core import AssocialTree, Tree, compute, typing, TypingError
|
||||
#from ..core.random import (
|
||||
# extract_rdleaf,
|
||||
# extract_rv,
|
||||
# random_generator,
|
||||
# compute_leafs,
|
||||
# replace_rdleaf,
|
||||
#)
|
||||
from ..core.MO import moify
|
||||
from .tokens import factory
|
||||
from .renders import render
|
||||
@ -79,55 +72,6 @@ class Expression(object):
|
||||
|
||||
return cls(t)
|
||||
|
||||
@classmethod
|
||||
def random(
|
||||
cls,
|
||||
template,
|
||||
conditions=[],
|
||||
rejected=[0],
|
||||
min_max=(-10, 10),
|
||||
variables_scope={},
|
||||
shuffle=False,
|
||||
):
|
||||
""" Initiate randomly the expression
|
||||
|
||||
:param template: the template of the expression
|
||||
:param conditions: conditions on randomly generate variable
|
||||
:param rejected: Values to reject for all random variables
|
||||
:param min_max: Min and max value for all random variables
|
||||
:param variables_scope: Dictionnary for each random varaibles to fic rejected and min_max
|
||||
:param shuffle: allowing to shuffle the tree
|
||||
:returns: TODO
|
||||
|
||||
:example:
|
||||
>>> e = Expression.random("{a}/{a*k}")
|
||||
>>> e # doctest: +SKIP
|
||||
<Exp: -3 / -15>
|
||||
>>> e = Expression.random("{a}/{a*k} - 3*{b}", variables_scope={'a':{'min_max':(10, 30)}})
|
||||
>>> e # doctest: +SKIP
|
||||
<Exp: 18 / 108 - 3 * 9>
|
||||
>>> e = Expression.random("{a}*x + {b}*x + 3", ["a>b"], rejected=[0, 1])
|
||||
>>> ee = e.simplify()
|
||||
>>> print(e) # doctest: +SKIP
|
||||
10x - 6x + 3
|
||||
>>> print(ee) # doctest: +SKIP
|
||||
4x + 3
|
||||
|
||||
"""
|
||||
rd_t = Tree.from_str(template, random=True)
|
||||
leafs = extract_rdleaf(rd_t)
|
||||
rd_varia = extract_rv(leafs)
|
||||
generated = random_generator(
|
||||
rd_varia, conditions, rejected, min_max, variables_scope
|
||||
)
|
||||
computed = compute_leafs(leafs, generated)
|
||||
t = replace_rdleaf(rd_t, computed).map_on_leaf(moify)
|
||||
|
||||
if shuffle:
|
||||
raise NotImplemented("Can't suffle expression yet")
|
||||
|
||||
return cls._post_processing(t)
|
||||
|
||||
@classmethod
|
||||
def _post_processing(cls, t):
|
||||
""" Post process the tree by typing it """
|
||||
|
@ -37,254 +37,28 @@ Tree with RdLeaf replaced by generated values
|
||||
|
||||
:example:
|
||||
|
||||
>>> from ...core.tree import Tree
|
||||
>>> from .random_tree import RandomTree
|
||||
>>> from .leaf import RdLeaf
|
||||
>>> rd_t = Tree("/", RdLeaf("a"), RdLeaf("a*k"))
|
||||
>>> from .generate import extract_letters, random_generator, eval_words
|
||||
>>> rd_t = RandomTree("/", RdLeaf("a"), RdLeaf("a*k"))
|
||||
>>> print(rd_t)
|
||||
/
|
||||
> {a}
|
||||
> {a*k}
|
||||
>>> leafs = extract_rdleaf(rd_t)
|
||||
>>> leafs
|
||||
['a', 'a*k']
|
||||
>>> rd_varia = extract_rv(leafs)
|
||||
>>> leafs = rd_t.random_leaf
|
||||
>>> leafs = ['a', 'a*k']
|
||||
>>> rd_varia = extract_letters(leafs)
|
||||
>>> sorted(list(rd_varia))
|
||||
['a', 'k']
|
||||
>>> generated = random_generator(rd_varia, conditions=['a%2+1'])
|
||||
>>> generated # doctest: +SKIP
|
||||
{'a': 7, 'k': 4}
|
||||
>>> computed = compute_leafs(leafs, generated)
|
||||
>>> computed = eval_words(leafs, generated)
|
||||
>>> computed # doctest: +SKIP
|
||||
{'a': 7, 'a*k': 28}
|
||||
>>> replaced = replace_rdleaf(rd_t, computed)
|
||||
>>> replaced = rd_t.eval_random_leaves(computed)
|
||||
>>> print(replaced) # doctest: +SKIP
|
||||
/
|
||||
> 7
|
||||
> 28
|
||||
|
||||
List generator
|
||||
--------------
|
||||
|
||||
This function ignores tree structure and works with lists
|
||||
|
||||
>>> values = list_generator(["a", "a*b", "b", "c"], conditions=["b%c==1"])
|
||||
>>> values # doctest: +SKIP
|
||||
{'a': -8, 'a*b': -40, 'b': 5, 'c': 4}
|
||||
"""
|
||||
|
||||
__all__ = ["list_generator"]
|
||||
|
||||
from random import choice
|
||||
|
||||
|
||||
def extract_rdleaf(tree):
|
||||
""" Extract rdLeaf in a Tree
|
||||
|
||||
:example:
|
||||
>>> from ...core.tree import Tree
|
||||
>>> from .leaf import RdLeaf
|
||||
>>> rd_t = Tree("+", RdLeaf("a"), RdLeaf("a*k"))
|
||||
>>> from .leaf import RdLeaf
|
||||
>>> extract_rdleaf(rd_t)
|
||||
['a', 'a*k']
|
||||
>>> rd_t = Tree("+", RdLeaf("a"), 2)
|
||||
>>> extract_rdleaf(rd_t)
|
||||
['a']
|
||||
"""
|
||||
rd_leafs = []
|
||||
for leaf in tree.get_leafs():
|
||||
try:
|
||||
leaf.rdleaf
|
||||
except AttributeError:
|
||||
pass
|
||||
else:
|
||||
rd_leafs.append(leaf.name)
|
||||
return rd_leafs
|
||||
|
||||
|
||||
def extract_rv(leafs):
|
||||
""" Extract the set of random values from the leaf list
|
||||
|
||||
:param leafs: list of leafs
|
||||
:return: set of random values
|
||||
|
||||
:example:
|
||||
>>> leafs = ["a", "a*k"]
|
||||
>>> extract_rv(leafs) == {'a', 'k'}
|
||||
True
|
||||
"""
|
||||
rd_values = set()
|
||||
for leaf in leafs:
|
||||
for c in leaf:
|
||||
if c.isalpha():
|
||||
rd_values.add(c)
|
||||
return rd_values
|
||||
|
||||
|
||||
def compute_leafs(leafs, generated_values):
|
||||
""" Compute leafs from generated random values
|
||||
|
||||
:param generated_values: Dictionnary of name:generated value
|
||||
:param leafs: list of leafs
|
||||
:return: Dictionnary of evaluated leafs from generated values
|
||||
|
||||
:example:
|
||||
>>> leafs = ["a", "a*k"]
|
||||
>>> generated_values = {"a":2, "k":3}
|
||||
>>> compute_leafs(leafs, generated_values)
|
||||
{'a': 2, 'a*k': 6}
|
||||
"""
|
||||
return {leaf: eval(leaf, generated_values) for leaf in leafs}
|
||||
|
||||
|
||||
def replace_rdleaf(tree, computed_leafs):
|
||||
""" Replace RdLeaf by the corresponding computed value
|
||||
|
||||
>>> from ...core.tree import Tree
|
||||
>>> from .leaf import RdLeaf
|
||||
>>> rd_t = Tree("+", RdLeaf("a"), RdLeaf("a*k"))
|
||||
>>> computed_leafs = {'a': 2, 'a*k': 6}
|
||||
>>> print(replace_rdleaf(rd_t, computed_leafs))
|
||||
+
|
||||
> 2
|
||||
> 6
|
||||
"""
|
||||
|
||||
def replace(leaf):
|
||||
try:
|
||||
return leaf.replace(computed_leafs)
|
||||
except AttributeError:
|
||||
return leaf
|
||||
|
||||
return tree.map_on_leaf(replace)
|
||||
|
||||
|
||||
def random_generator(
|
||||
rd_variables, conditions=[], rejected=[0], min_max=(-10, 10), variables_scope={}
|
||||
):
|
||||
""" Generate random variables
|
||||
|
||||
:param rd_variables: list of random variables to generate
|
||||
:param conditions: condition over variables
|
||||
:param rejected: Rejected values for the generator (default [0])
|
||||
:param min_max: (min, max) limits in between variables will be generated
|
||||
:param variables_scope: rejected and min_max define for individual variables
|
||||
:return: dictionnary of generated variables
|
||||
|
||||
:example:
|
||||
>>> gene = random_generator(["a", "b"],
|
||||
... ["a > 0"],
|
||||
... [0], (-10, 10),
|
||||
... {"a": {"rejected": [0, 1]},
|
||||
... "b": {"min_max": (-5, 0)}})
|
||||
>>> gene["a"] > 0
|
||||
True
|
||||
>>> gene["a"] != 0
|
||||
True
|
||||
>>> gene["b"] < 0
|
||||
True
|
||||
>>> gene = random_generator(["a", "b"],
|
||||
... ["a % b == 0"],
|
||||
... [0, 1], (-10, 10))
|
||||
>>> gene["a"] not in [0, 1]
|
||||
True
|
||||
>>> gene["b"] in list(range(-10, 11))
|
||||
True
|
||||
>>> gene["a"] % gene["b"]
|
||||
0
|
||||
"""
|
||||
complete_scope = build_variable_scope(
|
||||
rd_variables, rejected, min_max, variables_scope
|
||||
)
|
||||
choices_list = {
|
||||
v: list(
|
||||
set(
|
||||
range(
|
||||
complete_scope[v]["min_max"][0], complete_scope[v]["min_max"][1] + 1
|
||||
)
|
||||
).difference(complete_scope[v]["rejected"])
|
||||
)
|
||||
for v in rd_variables
|
||||
}
|
||||
|
||||
# quantity_choices = reduce(lambda x,y : x*y,
|
||||
# [len(choices_list[v]) for v in choices_list])
|
||||
# TODO: améliorer la méthode de rejet avec un cache |dim. mai 12 17:04:11 CEST 2019
|
||||
|
||||
generate_variable = {v: choice(choices_list[v]) for v in rd_variables}
|
||||
|
||||
while not all([eval(c, __builtins__, generate_variable) for c in conditions]):
|
||||
generate_variable = {v: choice(choices_list[v]) for v in rd_variables}
|
||||
|
||||
return generate_variable
|
||||
|
||||
|
||||
def build_variable_scope(rd_variables, rejected, min_max, variables_scope):
|
||||
""" Build variables scope from incomplete one
|
||||
|
||||
:param rd_variables: list of random variables to generate
|
||||
:param rejected: Rejected values for the generator
|
||||
:param min_max: (min, max) limits in between variables will be generated
|
||||
:param variables_scope: rejected and min_max define for individual variables
|
||||
:return: complete variable scope
|
||||
|
||||
:example:
|
||||
>>> completed = build_variable_scope(["a", "b", "c", "d"], [0], (-10, 10),
|
||||
... {"a": {"rejected": [0, 1]},
|
||||
... "b": {"min_max": (-5, 0)},
|
||||
... "c": {"rejected": [2], "min_max": (0, 5)}})
|
||||
>>> complete = {'a': {'rejected': [0, 1], 'min_max': (-10, 10)},
|
||||
... 'b': {'rejected': [0], 'min_max': (-5, 0)},
|
||||
... 'c': {'rejected': [2], 'min_max': (0, 5)},
|
||||
... 'd': {'rejected': [0], 'min_max': (-10, 10)}}
|
||||
>>> completed == complete
|
||||
True
|
||||
"""
|
||||
complete_scope = variables_scope.copy()
|
||||
for v in rd_variables:
|
||||
try:
|
||||
complete_scope[v]
|
||||
except KeyError:
|
||||
complete_scope[v] = {"rejected": rejected, "min_max": min_max}
|
||||
else:
|
||||
try:
|
||||
complete_scope[v]["rejected"]
|
||||
except KeyError:
|
||||
complete_scope[v]["rejected"] = rejected
|
||||
try:
|
||||
complete_scope[v]["min_max"]
|
||||
except KeyError:
|
||||
complete_scope[v]["min_max"] = min_max
|
||||
return complete_scope
|
||||
|
||||
|
||||
def list_generator(var_list, conditions=[], rejected=[0], min_max=(-10, 10), variables_scope={}, dictionnary=False):
|
||||
""" Generate random computed values from the list
|
||||
|
||||
:param rd_variables: list of random variables to generate (can be computed value - "a*b")
|
||||
:param conditions: condition over variables
|
||||
:param rejected: Rejected values for the generator (default [0])
|
||||
:param min_max: (min, max) limits in between variables will be generated
|
||||
:param variables_scope: rejected and min_max define for individual variables
|
||||
:param dictionnary: the return value will be a dictionnary with var_list as keys (default False)
|
||||
:return: dictionnary of generated variables
|
||||
|
||||
:example:
|
||||
>>> a, ab, b, c = list_generator(["a", "a*b", "b", "c"])
|
||||
>>> a, ab, b, c # doctest: +SKIP
|
||||
(5, -20, -4, -3)
|
||||
>>> a * b == ab
|
||||
True
|
||||
>>> ab # doctest: +SKIP
|
||||
-20
|
||||
>>> a, b # doctest: +SKIP
|
||||
5, -4
|
||||
>>> list_generator(["a", "a*b", "b", "c"], dictionnary=True) # doctest: +SKIP
|
||||
{'a': -3, 'a*b': 18, 'b': -6, 'c': -4}
|
||||
"""
|
||||
rv = extract_rv(var_list)
|
||||
rv_gen = random_generator(rv, conditions, rejected, min_max, variables_scope)
|
||||
generated = compute_leafs(var_list, rv_gen)
|
||||
if dictionnary:
|
||||
return generated
|
||||
return [generated[v] for v in var_list]
|
||||
|
146
mapytex/calculus/random/core/generate.py
Normal file
146
mapytex/calculus/random/core/generate.py
Normal file
@ -0,0 +1,146 @@
|
||||
#! /usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
# vim:fenc=utf-8
|
||||
#
|
||||
# Copyright © 2017 lafrite <lafrite@Poivre>
|
||||
#
|
||||
# Distributed under terms of the MIT license.
|
||||
|
||||
|
||||
from random import choice
|
||||
|
||||
|
||||
def extract_letters(words:list[str])->set[str]:
|
||||
""" Extracts unique letters from a list of words
|
||||
|
||||
:param words: list of leafs
|
||||
:return: set of letters
|
||||
|
||||
:example:
|
||||
>>> leafs = ["a", "a*k"]
|
||||
>>> extract_letters(leafs) == {'a', 'k'}
|
||||
True
|
||||
"""
|
||||
letters = set()
|
||||
for word in words:
|
||||
for c in word:
|
||||
if c.isalpha():
|
||||
letters.add(c)
|
||||
return letters
|
||||
|
||||
|
||||
def eval_words(words:list[str], values:dict[str,int]) -> dict[str, int]:
|
||||
""" Evaluate words replacing letters with values
|
||||
|
||||
:param words: list of words
|
||||
:param values: Dictionary of letters:value
|
||||
:return: Dictionary of evaluated words from generated values
|
||||
|
||||
:example:
|
||||
>>> leafs = ["a", "a*k"]
|
||||
>>> generated_values = {"a":2, "k":3}
|
||||
>>> eval_words(leafs, generated_values)
|
||||
{'a': 2, 'a*k': 6}
|
||||
"""
|
||||
return {word: eval(word, values) for word in words}
|
||||
|
||||
|
||||
def build_variable_scope(rd_variables, rejected, min_max, variables_scope):
|
||||
""" Build variables scope from incomplete one
|
||||
|
||||
:param rd_variables: list of random variables to generate
|
||||
:param rejected: Rejected values for the generator
|
||||
:param min_max: (min, max) limits in between variables will be generated
|
||||
:param variables_scope: rejected and min_max define for individual variables
|
||||
:return: complete variable scope
|
||||
|
||||
:example:
|
||||
>>> completed = build_variable_scope(["a", "b", "c", "d"], [0], (-10, 10),
|
||||
... {"a": {"rejected": [0, 1]},
|
||||
... "b": {"min_max": (-5, 0)},
|
||||
... "c": {"rejected": [2], "min_max": (0, 5)}})
|
||||
>>> complete = {'a': {'rejected': [0, 1], 'min_max': (-10, 10)},
|
||||
... 'b': {'rejected': [0], 'min_max': (-5, 0)},
|
||||
... 'c': {'rejected': [2], 'min_max': (0, 5)},
|
||||
... 'd': {'rejected': [0], 'min_max': (-10, 10)}}
|
||||
>>> completed == complete
|
||||
True
|
||||
"""
|
||||
complete_scope = variables_scope.copy()
|
||||
for v in rd_variables:
|
||||
try:
|
||||
complete_scope[v]
|
||||
except KeyError:
|
||||
complete_scope[v] = {"rejected": rejected, "min_max": min_max}
|
||||
else:
|
||||
try:
|
||||
complete_scope[v]["rejected"]
|
||||
except KeyError:
|
||||
complete_scope[v]["rejected"] = rejected
|
||||
try:
|
||||
complete_scope[v]["min_max"]
|
||||
except KeyError:
|
||||
complete_scope[v]["min_max"] = min_max
|
||||
return complete_scope
|
||||
|
||||
|
||||
def random_generator(
|
||||
rd_variables, conditions=[], rejected=[0], min_max=(-10, 10), variables_scope={}
|
||||
):
|
||||
""" Generate random variables
|
||||
|
||||
:param rd_variables: list of random variables to generate
|
||||
:param conditions: condition over variables
|
||||
:param rejected: Rejected values for the generator (default [0])
|
||||
:param min_max: (min, max) limits in between variables will be generated
|
||||
:param variables_scope: rejected and min_max define for individual variables
|
||||
:return: dictionnary of generated variables
|
||||
|
||||
:example:
|
||||
>>> gene = random_generator(["a", "b"],
|
||||
... ["a > 0"],
|
||||
... [0], (-10, 10),
|
||||
... {"a": {"rejected": [0, 1]},
|
||||
... "b": {"min_max": (-5, 0)}})
|
||||
>>> gene["a"] > 0
|
||||
True
|
||||
>>> gene["a"] != 0
|
||||
True
|
||||
>>> gene["b"] < 0
|
||||
True
|
||||
>>> gene = random_generator(["a", "b"],
|
||||
... ["a % b == 0"],
|
||||
... [0, 1], (-10, 10))
|
||||
>>> gene["a"] not in [0, 1]
|
||||
True
|
||||
>>> gene["b"] in list(range(-10, 11))
|
||||
True
|
||||
>>> gene["a"] % gene["b"]
|
||||
0
|
||||
"""
|
||||
complete_scope = build_variable_scope(
|
||||
rd_variables, rejected, min_max, variables_scope
|
||||
)
|
||||
choices_list = {
|
||||
v: list(
|
||||
set(
|
||||
range(
|
||||
complete_scope[v]["min_max"][0], complete_scope[v]["min_max"][1] + 1
|
||||
)
|
||||
).difference(complete_scope[v]["rejected"])
|
||||
)
|
||||
for v in rd_variables
|
||||
}
|
||||
|
||||
# quantity_choices = reduce(lambda x,y : x*y,
|
||||
# [len(choices_list[v]) for v in choices_list])
|
||||
# TODO: améliorer la méthode de rejet avec un cache |dim. mai 12 17:04:11 CEST 2019
|
||||
|
||||
generate_variable = {v: choice(choices_list[v]) for v in rd_variables}
|
||||
|
||||
while not all([eval(c, __builtins__, generate_variable) for c in conditions]):
|
||||
generate_variable = {v: choice(choices_list[v]) for v in rd_variables}
|
||||
|
||||
return generate_variable
|
||||
|
||||
|
104
mapytex/calculus/random/core/random_tree.py
Normal file
104
mapytex/calculus/random/core/random_tree.py
Normal file
@ -0,0 +1,104 @@
|
||||
from ...core.tree import MutableTree, Tree
|
||||
from .generate import extract_letters, random_generator
|
||||
from .str2 import rdstr2
|
||||
|
||||
class RandomTree(MutableTree):
|
||||
""" MutableTree that accept {a} syntax for random generation
|
||||
|
||||
:example:
|
||||
>>> t = RandomTree()
|
||||
>>> type(t)
|
||||
<class 'mapytex.calculus.random.core.random_tree.RandomTree'>
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def from_str(cls, expression):
|
||||
""" Initiate a random tree from a string that need to be parsed
|
||||
|
||||
:exemple:
|
||||
>>> t = RandomTree.from_str("{b}*x+{c}")
|
||||
>>> print(t)
|
||||
+
|
||||
> *
|
||||
| > {b}
|
||||
| > x
|
||||
> {c}
|
||||
>>> t = RandomTree.from_str("{a}*({b}*x+{c})")
|
||||
>>> print(t)
|
||||
*
|
||||
> {a}
|
||||
> +
|
||||
| > *
|
||||
| | > {b}
|
||||
| | > x
|
||||
| > {c}
|
||||
"""
|
||||
str_2_mut_tree = rdstr2(cls.sink)
|
||||
return str_2_mut_tree(expression)
|
||||
|
||||
def generate(self, conditions:list[str]=[], rejected:list[int]=[0, 1], min_max:tuple[int]=(-10, 10),scopes:dict={}) -> Tree:
|
||||
""" Generate a random version of self """
|
||||
|
||||
pass
|
||||
|
||||
@property
|
||||
def random_leaf(self) -> list[str]:
|
||||
""" Get list of random leaves
|
||||
|
||||
:example:
|
||||
>>> from .leaf import RdLeaf
|
||||
>>> random_tree = RandomTree("+", RdLeaf("a"), RdLeaf("a*k"))
|
||||
>>> random_tree.random_leaf
|
||||
['a', 'a*k']
|
||||
>>> random_tree = RandomTree("+", RdLeaf("a"), 2)
|
||||
>>> random_tree.random_leaf
|
||||
['a']
|
||||
"""
|
||||
rd_leafs = []
|
||||
for leaf in self.get_leafs():
|
||||
try:
|
||||
leaf.rdleaf
|
||||
except AttributeError:
|
||||
pass
|
||||
else:
|
||||
rd_leafs.append(leaf.name)
|
||||
return rd_leafs
|
||||
|
||||
|
||||
@property
|
||||
def random_value(self) -> set[str]:
|
||||
""" Get set of random values to generate
|
||||
|
||||
:example:
|
||||
>>> from .leaf import RdLeaf
|
||||
>>> random_tree = RandomTree("+", RdLeaf("a"), RdLeaf("a*k"))
|
||||
>>> random_tree.random_value == {'a', 'k'}
|
||||
True
|
||||
>>> random_tree = RandomTree("+", RdLeaf("a"), 2)
|
||||
>>> random_tree.random_value
|
||||
{'a'}
|
||||
"""
|
||||
return extract_letters(self.random_leaf)
|
||||
|
||||
|
||||
def eval_random_leaves(self, leaves_value:dict[str, int]):
|
||||
""" Given random leaves value get the tree
|
||||
|
||||
:example:
|
||||
>>> from .leaf import RdLeaf
|
||||
>>> rd_t = RandomTree("+", RdLeaf("a"), RdLeaf("a*k"))
|
||||
>>> leaves_values = {'a': 2, 'a*k': 6}
|
||||
>>> t = rd_t.eval_random_leaves(leaves_values)
|
||||
>>> type(t)
|
||||
<class 'mapytex.calculus.core.tree.Tree'>
|
||||
>>> print(t)
|
||||
+
|
||||
> 2
|
||||
> 6
|
||||
"""
|
||||
def replace(leaf):
|
||||
try:
|
||||
return leaf.replace(leaves_value)
|
||||
except AttributeError:
|
||||
return leaf
|
||||
return self.map_on_leaf(replace)
|
@ -4,7 +4,6 @@ from functools import partial
|
||||
from ...core.str2 import concurent_broadcast, lookforNumbers, pparser, missing_times, lookfor
|
||||
from ...core.coroutine import STOOOP
|
||||
from ...core.MO import moify_cor
|
||||
from ...core.tree import MutableTree
|
||||
from .leaf import look_for_rdleaf
|
||||
|
||||
def rdstr2(sink):
|
||||
@ -35,31 +34,3 @@ def rdstr2(sink):
|
||||
|
||||
return pipeline
|
||||
|
||||
class RandomTree(MutableTree):
|
||||
""" MutableTree that accept {a} syntax for random generation """
|
||||
|
||||
@classmethod
|
||||
def from_str(cls, expression):
|
||||
""" Initiate a random tree from a string that need to be parsed
|
||||
|
||||
:exemple:
|
||||
>>> t = RandomTree.from_str("{b}*x+{c}")
|
||||
>>> print(t)
|
||||
+
|
||||
> *
|
||||
| > {b}
|
||||
| > x
|
||||
> {c}
|
||||
>>> t = RandomTree.from_str("{a}*({b}*x+{c})")
|
||||
>>> print(t)
|
||||
*
|
||||
> {a}
|
||||
> +
|
||||
| > *
|
||||
| | > {b}
|
||||
| | > x
|
||||
| > {c}
|
||||
"""
|
||||
str_2_mut_tree = rdstr2(cls.sink)
|
||||
return str_2_mut_tree(expression)
|
||||
|
||||
|
55
mapytex/calculus/random/expression.py
Normal file
55
mapytex/calculus/random/expression.py
Normal file
@ -0,0 +1,55 @@
|
||||
from ..API.expression import Expression
|
||||
from ..core.tree import Tree
|
||||
|
||||
def expression():
|
||||
""" Generate a random expression """
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def random(
|
||||
cls,
|
||||
template,
|
||||
conditions=[],
|
||||
rejected=[0],
|
||||
min_max=(-10, 10),
|
||||
variables_scope={},
|
||||
shuffle=False,
|
||||
):
|
||||
""" Initiate randomly the expression
|
||||
|
||||
:param template: the template of the expression
|
||||
:param conditions: conditions on randomly generate variable
|
||||
:param rejected: Values to reject for all random variables
|
||||
:param min_max: Min and max value for all random variables
|
||||
:param variables_scope: Dictionnary for each random varaibles to fic rejected and min_max
|
||||
:param shuffle: allowing to shuffle the tree
|
||||
:returns: TODO
|
||||
|
||||
:example:
|
||||
>>> e = Expression.random("{a}/{a*k}")
|
||||
>>> e # doctest: +SKIP
|
||||
<Exp: -3 / -15>
|
||||
>>> e = Expression.random("{a}/{a*k} - 3*{b}", variables_scope={'a':{'min_max':(10, 30)}})
|
||||
>>> e # doctest: +SKIP
|
||||
<Exp: 18 / 108 - 3 * 9>
|
||||
>>> e = Expression.random("{a}*x + {b}*x + 3", ["a>b"], rejected=[0, 1])
|
||||
>>> ee = e.simplify()
|
||||
>>> print(e) # doctest: +SKIP
|
||||
10x - 6x + 3
|
||||
>>> print(ee) # doctest: +SKIP
|
||||
4x + 3
|
||||
|
||||
"""
|
||||
rd_t = Tree.from_str(template)
|
||||
leafs = extract_rdleaf(rd_t)
|
||||
rd_varia = extract_rv(leafs)
|
||||
generated = random_generator(
|
||||
rd_varia, conditions, rejected, min_max, variables_scope
|
||||
)
|
||||
computed = compute_leafs(leafs, generated)
|
||||
t = replace_rdleaf(rd_t, computed).map_on_leaf(moify)
|
||||
|
||||
if shuffle:
|
||||
raise NotImplemented("Can't suffle expression yet")
|
||||
|
||||
return cls._post_processing(t)
|
43
mapytex/calculus/random/list.py
Normal file
43
mapytex/calculus/random/list.py
Normal file
@ -0,0 +1,43 @@
|
||||
"""
|
||||
List generator
|
||||
--------------
|
||||
|
||||
This function ignores tree structure and works with lists
|
||||
|
||||
>>> values = list_generator(["a", "a*b", "b", "c"], conditions=["b%c==1"])
|
||||
>>> values # doctest: +SKIP
|
||||
{'a': -8, 'a*b': -40, 'b': 5, 'c': 4}
|
||||
"""
|
||||
|
||||
from .core.generate import extract_letters, random_generator, eval_words
|
||||
|
||||
def list_generator(var_list, conditions=[], rejected=[0], min_max=(-10, 10), variables_scope={}, dictionnary=False):
|
||||
""" Generate random computed values from the list
|
||||
|
||||
:param rd_variables: list of random variables to generate (can be computed value - "a*b")
|
||||
:param conditions: condition over variables
|
||||
:param rejected Rejected values for the generator (default [0])
|
||||
:param min_max: (min, max) limits in between variables will be generated
|
||||
:param variables_scope: rejected and min_max define for individual variables
|
||||
:param dictionnary: the return value will be a dictionnary with var_list as keys (default False)
|
||||
:return: dictionnary of generated variables
|
||||
|
||||
:example:
|
||||
>>> a, ab, b, c = list_generator(["a", "a*b", "b", "c"])
|
||||
>>> a, ab, b, c # doctest: +SKIP
|
||||
(5, -20, -4, -3)
|
||||
>>> a * b == ab
|
||||
True
|
||||
>>> ab # doctest: +SKIP
|
||||
-20
|
||||
>>> a, b # doctest: +SKIP
|
||||
5, -4
|
||||
>>> list_generator(["a", "a*b", "b", "c"], dictionnary=True) # doctest: +SKIP
|
||||
{'a': -3, 'a*b': 18, 'b': -6, 'c': -4}
|
||||
"""
|
||||
rv = extract_letters(var_list)
|
||||
rv_gen = random_generator(rv, conditions, rejected, min_max, variables_scope)
|
||||
generated = eval_words(var_list, rv_gen)
|
||||
if dictionnary:
|
||||
return generated
|
||||
return [generated[v] for v in var_list]
|
0
test/calculus/__init__.py
Normal file
0
test/calculus/__init__.py
Normal file
0
test/calculus/api/__init__.py
Normal file
0
test/calculus/api/__init__.py
Normal file
0
test/calculus/api/random/__init__.py
Normal file
0
test/calculus/api/random/__init__.py
Normal file
6
test/calculus/api/random/test_random.py
Normal file
6
test/calculus/api/random/test_random.py
Normal file
@ -0,0 +1,6 @@
|
||||
import pytest
|
||||
import mapytex
|
||||
|
||||
def test_random_function():
|
||||
assert 1 == 1
|
||||
#mapytex.random("{a}")
|
Loading…
Reference in New Issue
Block a user