Feat: random list generator
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
73b19e9644
commit
3b5c01e5cc
@ -1,7 +1,7 @@
|
||||
#!/usr/bin/env python
|
||||
# encoding: utf-8
|
||||
|
||||
from .calculus import Expression, Integer, Decimal
|
||||
from .calculus import Expression, Integer, Decimal, list_generator
|
||||
|
||||
# Expression.set_render('tex')
|
||||
|
||||
|
@ -31,6 +31,7 @@ Expression is the classe wich handle all calculus. It can randomly generate or i
|
||||
"""
|
||||
|
||||
from .API import Expression, Integer, Decimal
|
||||
from .core import list_generator
|
||||
from decimal import getcontext
|
||||
#getcontext().prec = 2
|
||||
|
||||
|
@ -66,6 +66,7 @@ from .tree import Tree, AssocialTree
|
||||
from .compute import compute
|
||||
from .typing import typing, TypingError
|
||||
from .renders import tree2txt, tree2tex
|
||||
from .random import list_generator
|
||||
|
||||
|
||||
# -----------------------------
|
||||
|
@ -47,8 +47,8 @@ Tree with RdLeaf replaced by generated values
|
||||
>>> leafs
|
||||
['a', 'a*k']
|
||||
>>> rd_varia = extract_rv(leafs)
|
||||
>>> rd_varia # doctest: +SKIP
|
||||
{'a', 'k'}
|
||||
>>> sorted(list(rd_varia))
|
||||
['a', 'k']
|
||||
>>> generated = random_generator(rd_varia, conditions=['a%2+1'])
|
||||
>>> generated # doctest: +SKIP
|
||||
{'a': 7, 'k': 4}
|
||||
@ -61,8 +61,18 @@ Tree with RdLeaf replaced by generated values
|
||||
> 7
|
||||
> 28
|
||||
|
||||
List generator
|
||||
--------------
|
||||
|
||||
This function ignores tree structure and works with lists
|
||||
|
||||
>>> values = list_generator(["a", "a*b", "b", "c"], conditions=["b%c==1"])
|
||||
>>> values # doctest: +SKIP
|
||||
{'a': -8, 'a*b': -40, 'b': 5, 'c': 4}
|
||||
"""
|
||||
|
||||
__all__ = ["generator"]
|
||||
|
||||
from random import choice
|
||||
from functools import reduce
|
||||
from .leaf import RdLeaf
|
||||
@ -244,3 +254,27 @@ def build_variable_scope(rd_variables, rejected, min_max, variables_scope):
|
||||
except KeyError:
|
||||
complete_scope[v]["min_max"] = min_max
|
||||
return complete_scope
|
||||
|
||||
|
||||
def list_generator(var_list, conditions=[], rejected=[0], min_max=(-10, 10), variables_scope={}):
|
||||
""" Generate random computed values from the list
|
||||
|
||||
:param rd_variables: list of random variables to generate (can be computed value - "a*b")
|
||||
:param conditions: condition over variables
|
||||
:param rejected: Rejected values for the generator (default [0])
|
||||
:param min_max: (min, max) limits in between variables will be generated
|
||||
:param variables_scope: rejected and min_max define for individual variables
|
||||
:return: dictionnary of generated variables
|
||||
|
||||
:example:
|
||||
>>> values = list_generator(["a", "a*b", "b", "c"])
|
||||
>>> values # doctest: +SKIP
|
||||
>>> values["a"] * values["b"] == values["a*b"]
|
||||
True
|
||||
>>> values["a*b"] # doctest: +SKIP
|
||||
>>> values["a"] * values["b"] # doctest: +SKIP
|
||||
"""
|
||||
rv = extract_rv(var_list)
|
||||
rv_gen = random_generator(rv, conditions, rejected, min_max, variables_scope)
|
||||
generated = compute_leafs(var_list, rv_gen)
|
||||
return generated
|
||||
|
Loading…
Reference in New Issue
Block a user