Feat: coefficients, delta and some roots for polynomial, Linear and Quadratic

This commit is contained in:
Bertrand Benjamin 2019-07-15 11:59:28 +02:00
parent a83b5ada8d
commit 50f77c4d60

View File

@ -31,6 +31,7 @@ class Polynomial(Token):
"""
def __init__(self, a, name="", ancestor=None):
""" Initiate Polynomial with a MO"""
if not isinstance(a, MO):
if isinstance(a, str):
raise TypeError
@ -47,17 +48,37 @@ class Polynomial(Token):
return cls(mo, name, ancestor)
@classmethod
def from_coefficients(cls, coefficients):
""" Initiate polynomial from list of coefficients """
pass
@classmethod
def random(cls):
raise NotImplemented
def __setitem__(self, key, item):
""" Use Polynomial like if they were a dictionnary to set coefficients """
pass
raise NotImplemented("Can't set coefficient of a polynomial")
def __getitem__(self, key):
""" Use Polynomial like if they were a dictionnary to get coefficients """
pass
""" Use Polynomial like if they were a dictionnary to get coefficients
:examples:
>>> from ...core.MO.polynomial import MOpolynomial
>>> P = Polynomial(MOpolynomial('x', [1, 2, 3]))
>>> P[0]
<MOnumber 1>
>>> P[1]
<MOnumber 2>
>>> P[2]
<MOnumber 3>
>>> P[3]
Traceback (most recent call last):
...
KeyError: 3
"""
return self._mo.coefficients[key]
def __call__(self, value):
""" Call a Polynomial to evaluate itself on value
@ -80,14 +101,42 @@ class Polynomial(Token):
tree = tree.map_on_leaf(replace_var)
return Expression(tree).simplify()
@property
def roots(self):
""" Get roots of the Polynomial """
raise NotImplemented("Can't compute roots not specific polynomial")
class Linear(Polynomial):
""" Token representing a linear """
""" Token representing a linear ax + b
:examples:
>>> from ...core.MO.polynomial import MOpolynomial, MOMonomial
>>> P = Linear(MOpolynomial('x', [1, 2]))
>>> P
<Linear 2x + 1>
>>> P.a
<MOnumber 2>
>>> P.b
<MOnumber 1>
>>> P.roots
[<Fraction - 2 / 1>]
"""
def __init__(self, mo, name="", ancestor=None):
""" Initiate Linear with MO
:examples:
>>> from ...core.MO.polynomial import MOpolynomial, MOMonomial
>>> P = Linear(MOpolynomial('x', [1, 2]))
>>> P
<Linear 2x + 1>
>>> Q = Linear(MOMonomial(3, 'x', 1))
>>> Q
<Linear 3x>
"""
Polynomial.__init__(self, mo, name, ancestor)
self._mathtype = "affine"
@ -95,12 +144,69 @@ class Linear(Polynomial):
def random(cls):
raise NotImplemented
@property
def a(self):
return self[1]
@property
def b(self):
return self[0]
@property
def roots(self):
""" Get the root of the polynomial
:examples:
>>> from ...core.MO.polynomial import MOpolynomial, MOMonomial
>>> P = Linear(MOpolynomial('x', [1, 2]))
>>> P.roots
[<Fraction - 2 / 1>]
>>> #P = Linear(MOpolynomial('x', [1, -2]))
>>> #P.roots
"""
try:
return [Expression.from_str(f"-{self.a}/{self.b}").simplify()]
except AttributeError:
return [Expression.from_str(f"-{self.a}/{self.b}")]
class Quadratic(Polynomial):
""" Token representing a quadratic """
""" Token representing a quadratic ax^2 + bx + c
:examples:
>>> from ...core.MO.polynomial import MOpolynomial
>>> P = Quadratic(MOpolynomial('x', [1, 2, 3]))
>>> P
<Quadratic 3x^2 + 2x + 1>
>>> P.a
<MOnumber 3>
>>> P.b
<MOnumber 2>
>>> P.c
<MOnumber 1>
>>> P.delta
<Integer - 8>
>>> for s in P.delta.explain():
... print(s)
2^2 - 4 * 3 * 1
4 - 12 * 1
4 - 12
- 8
>>> P.roots
[]
"""
def __init__(self, mo, name="", ancestor=None):
""" Initiate Quadratic from MO
>>> from ...core.MO.polynomial import MOpolynomial
>>> P = Quadratic(MOpolynomial('x', [1, 2, 3]))
>>> P
<Quadratic 3x^2 + 2x + 1>
"""
Polynomial.__init__(self, mo, name, ancestor)
self._mathtype = "polynome du 2nd degré"
@ -109,6 +215,32 @@ class Quadratic(Polynomial):
def random(cls):
raise NotImplemented
@property
def a(self):
return self[2]
@property
def b(self):
return self[1]
@property
def c(self):
return self[0]
@property
def delta(self):
return Expression.from_str(f"{self.b}^2-4*{self.a}*{self.c}").simplify()
@property
def roots(self):
if self.delta._mo < 0:
return []
elif self.delta._mo == 0:
return [Expression.from_str(f"-{self.b}/(2*{self.a})").simplify()]
else:
raise NotImplemented("Todo!")
def extract_variable(leaf):
try: