move random_generator for his own file
This commit is contained in:
parent
e1cb61a1a2
commit
fef1b08e9e
pymath/stat
@ -8,8 +8,8 @@
|
||||
#
|
||||
|
||||
from math import sqrt, ceil
|
||||
from random import randint, uniform, gauss
|
||||
from .number_tools import number_factory
|
||||
from .random_generator import random_generator
|
||||
|
||||
class Dataset(list):
|
||||
""" A dataset (a list) with statistics and latex rendering methods
|
||||
@ -29,11 +29,11 @@ class Dataset(list):
|
||||
|
||||
@classmethod
|
||||
def random(cls, length, data_name = "Valeurs", \
|
||||
distrib = gauss, rd_args = (0,1), \
|
||||
distrib = "gauss", rd_args = (0,1), \
|
||||
nbr_format = lambda x:round(x,2), \
|
||||
v_min = None, v_max = None, \
|
||||
exact_mean = None):
|
||||
""" Create a random Dataset.
|
||||
""" Generate a random list of value
|
||||
|
||||
:param length: length of the dataset
|
||||
:param distrib: Distribution of the data set. It can be a function or string from ["randint", "uniform", "gauss"]
|
||||
@ -42,53 +42,12 @@ class Dataset(list):
|
||||
:param v_min: minimum accepted value
|
||||
:param v_max: maximum accepted value
|
||||
:param exact_mean: if set, the last generated number will be create in order that the computed mean is exacly equal to "exact_mean"
|
||||
|
||||
: Exemple:
|
||||
>>> Dataset.random(10)
|
||||
>>> Dataset.random(10, distrib = uniform, rd_args = (5, 10))
|
||||
>>> Dataset.random(10, distrib = "uniform", rd_args = (5, 10))
|
||||
>>> Dataset.random(10, v_min = 0)
|
||||
>>> Dataset.random(10, exact_mean = 0)
|
||||
>>> Dataset.random(10, distrib = gauss, rd_args = (50,20), nbr_format = int)
|
||||
|
||||
"""
|
||||
# if exact_mean is set, we create automaticaly only length-1 value
|
||||
if exact_mean != None:
|
||||
length = length - 1
|
||||
|
||||
# build function to test created values
|
||||
if v_min == None:
|
||||
v1 = lambda x: True
|
||||
else:
|
||||
v1 = lambda x: x >= v_min
|
||||
if v_max == None:
|
||||
v2 = lambda x: True
|
||||
else:
|
||||
v2 = lambda x: x <= v_max
|
||||
validate = lambda x : v1(x) and v2(x)
|
||||
|
||||
# get distrib function
|
||||
distribs = {"gauss": gauss, "uniform": uniform, "randint":randint}
|
||||
try:
|
||||
distrib(*rd_args)
|
||||
except TypeError:
|
||||
distrib = distribs[distrib]
|
||||
|
||||
# building values
|
||||
data = []
|
||||
for _ in range(length):
|
||||
valid = False
|
||||
while not valid:
|
||||
v = nbr_format(distrib(*rd_args))
|
||||
valid = validate(v)
|
||||
data.append(v)
|
||||
|
||||
# Build last value
|
||||
if exact_mean != None:
|
||||
last_v = nbr_format((length+1) * exact_mean - sum(data))
|
||||
if not validate(last_v):
|
||||
raise ValueError("Can't build the last value. Conflict between v_min/v_max and exact_mean")
|
||||
data.append(last_v)
|
||||
data = random_generator(length,\
|
||||
distrib, rd_args, \
|
||||
nbr_format, \
|
||||
v_min, v_max, \
|
||||
exact_mean)
|
||||
|
||||
return cls(data, data_name = data_name)
|
||||
|
||||
|
75
pymath/stat/random_generator.py
Normal file
75
pymath/stat/random_generator.py
Normal file
@ -0,0 +1,75 @@
|
||||
#/usr/bin/env python
|
||||
# -*- coding:Utf-8 -*-
|
||||
|
||||
from random import randint, uniform, gauss
|
||||
|
||||
|
||||
def random_generator(length,\
|
||||
distrib = gauss, rd_args = (0,1), \
|
||||
nbr_format = lambda x:round(x,2), \
|
||||
v_min = None, v_max = None, \
|
||||
exact_mean = None):
|
||||
""" Generate a random list of value
|
||||
|
||||
:param length: length of the dataset
|
||||
:param distrib: Distribution of the data set. It can be a function or string from ["randint", "uniform", "gauss"]
|
||||
:param rd_args: arguments to pass to distrib
|
||||
:param nbr_format: function which format value
|
||||
:param v_min: minimum accepted value
|
||||
:param v_max: maximum accepted value
|
||||
:param exact_mean: if set, the last generated number will be create in order that the computed mean is exacly equal to "exact_mean"
|
||||
|
||||
: Exemple:
|
||||
>>> random_generator(10)
|
||||
>>> random_generator(10, distrib = uniform, rd_args = (5, 10))
|
||||
>>> random_generator(10, distrib = "uniform", rd_args = (5, 10))
|
||||
>>> random_generator(10, v_min = 0)
|
||||
>>> random_generator(10, exact_mean = 0)
|
||||
>>> random_generator(10, distrib = gauss, rd_args = (50,20), nbr_format = int)
|
||||
|
||||
"""
|
||||
# if exact_mean is set, we create automaticaly only length-1 value
|
||||
if exact_mean != None:
|
||||
length = length - 1
|
||||
|
||||
# build function to test created values
|
||||
if v_min == None:
|
||||
v1 = lambda x: True
|
||||
else:
|
||||
v1 = lambda x: x >= v_min
|
||||
if v_max == None:
|
||||
v2 = lambda x: True
|
||||
else:
|
||||
v2 = lambda x: x <= v_max
|
||||
validate = lambda x : v1(x) and v2(x)
|
||||
|
||||
# get distrib function
|
||||
distribs = {"gauss": gauss, "uniform": uniform, "randint":randint}
|
||||
try:
|
||||
distrib(*rd_args)
|
||||
except TypeError:
|
||||
distrib = distribs[distrib]
|
||||
|
||||
# building values
|
||||
data = []
|
||||
for _ in range(length):
|
||||
valid = False
|
||||
while not valid:
|
||||
v = nbr_format(distrib(*rd_args))
|
||||
valid = validate(v)
|
||||
data.append(v)
|
||||
|
||||
# Build last value
|
||||
if exact_mean != None:
|
||||
last_v = nbr_format((length+1) * exact_mean - sum(data))
|
||||
if not validate(last_v):
|
||||
raise ValueError("Can't build the last value. Conflict between v_min/v_max and exact_mean")
|
||||
data.append(last_v)
|
||||
|
||||
return data
|
||||
|
||||
# -----------------------------
|
||||
# Reglages pour 'vim'
|
||||
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
||||
# cursor: 16 del
|
||||
|
Loading…
Reference in New Issue
Block a user