Compare commits

80 Commits

Author SHA1 Message Date
83eb9c327b Feat: import html for 404 layout 2021-11-24 06:04:02 +01:00
ff1ecfef25 Feat: import app from good place (index instead of app)
see https://dash.plotly.com/urls
2021-11-24 06:03:16 +01:00
921292a0d2 Feat: activate cli 2021-11-24 05:48:22 +01:00
2d08671247 Feat: add "." in csv example and fix issues 2021-04-22 08:00:25 +02:00
a16211cbd4 Feat: legend formating and remove toolbox 2021-04-22 08:00:02 +02:00
876f583d51 Feat: format_score 2021-04-22 07:49:51 +02:00
97b97af2de Fix: replace np.isnan with pd.isnull 2021-04-21 07:09:05 +02:00
d8d84690c6 Feat: remove a print 2021-04-21 07:08:58 +02:00
18f855ab83 Feat: question levels bar figure 2021-04-21 07:03:45 +02:00
36425e587e Feat: add comment to score_config 2021-04-21 07:03:31 +02:00
8cdeecfc53 Feat: Score histogram 2021-04-20 19:13:14 +02:00
1a7c97d869 Feat: statistics table 2021-04-20 19:04:06 +02:00
ab5de2711e Feat: score_table style 2021-04-20 18:48:52 +02:00
235019102b Feat: Final mark for students 2021-04-20 18:30:12 +02:00
8ec24a24b3 Feat: delete functions on dataframe and move it to functions on rows 2021-04-19 21:54:44 +02:00
2e86b3a0a2 Feat: filter none numeric scores 2021-04-19 14:30:37 +02:00
7e6b24aaea Feat: rename valid_scores to scores in config 2021-04-19 14:29:57 +02:00
6889ddd97c Feat: relative import to absolute 2021-04-18 22:44:41 +02:00
10b9954c05 Feat: import score dataframe functions 2021-04-18 22:43:46 +02:00
7553628306 Feat: score table color formating based on score 2021-04-18 20:11:54 +02:00
effc049578 Fix: default_config color to string 2021-04-18 20:11:35 +02:00
411f910ce6 Feat: add colors to default_config 2021-04-18 18:00:17 +02:00
00d81d694a Feat: write column_values_to_column 2021-04-18 17:59:46 +02:00
a8b2ac455d Fix: column check in get_exam_questions 2021-04-18 17:23:37 +02:00
9e0ea14d05 Feat: remove relative imports and simplify get_unstack_scores 2021-04-18 17:20:54 +02:00
2031ade1ab Feat: basic score_table 2021-04-18 16:44:40 +02:00
6ed55c07d4 Feat: formating 2021-04-18 16:44:23 +02:00
1d234ea5fc Feat: add column description 2021-04-18 11:42:13 +02:00
646314ad88 Feat: store exams_scores in store 2021-04-18 10:50:26 +02:00
0739cfdae7 Feat: add get_exam_scores to loader 2021-04-18 10:48:12 +02:00
a50901556e Feat: start exams scores pages 2021-04-18 10:02:10 +02:00
abc5513268 Feat: origin store as string 2021-04-18 10:01:26 +02:00
598086ddb0 Feat: dash setup and start home page 2021-04-13 06:26:45 +02:00
94f8080acd Feat: empty dataframe in get_exams 2021-04-13 06:26:21 +02:00
6331573940 Feat: rename store to database and fix exam and question ids 2021-04-12 11:42:24 +02:00
a292fe23e0 Feat: remove get_student_scores 2021-04-07 20:50:55 +02:00
3005d49a1d Feat: wrote get_students 2021-04-06 19:51:15 +02:00
9fce390304 Feat: remove hard coded field in get_questions_scores 2021-04-06 19:41:56 +02:00
94f94dae84 Feat: get_questions_scores wrote 2021-04-06 19:37:12 +02:00
596a52b1d0 Feat: add id to exam and questions 2021-04-06 18:57:41 +02:00
37c95d75de Feat: write get_exam_questions 2021-04-06 18:18:25 +02:00
bd91bf51d6 Feat: get_exams for CSVLoader 2021-04-05 21:21:45 +02:00
c1fd060707 Feat: Start filesystem loader 2021-04-05 19:02:10 +02:00
a0e94f52b1 Feat: formating questions 2021-04-05 08:31:05 +02:00
c84f9845b2 Feat: visualisation des Competences et des themes dans students 2021-02-27 10:31:52 +01:00
d9e95f2186 Feat: return empty fig 2021-02-27 10:03:24 +01:00
581b0f4f2f Feat: table des évaluations 2021-02-23 17:55:43 +01:00
3dbfc85447 Feat: filter dans store scores 2021-02-23 17:40:18 +01:00
b5bf1ac137 Feat: add students to paths 2021-02-23 17:07:05 +01:00
74d751a586 Feat: update student list 2021-02-23 17:06:55 +01:00
1855d4016d Feat: start student_analysis 2021-02-23 16:53:59 +01:00
ff94470fb4 Feat: Start feedback on eval 2021-02-23 16:14:05 +01:00
d322452a6e Feat: rename exam-analysis to dashboard 2021-02-23 16:10:16 +01:00
e1d3940e9d Feat: add total score_rate 2021-02-08 15:45:50 +01:00
7dba11996a Feat: formating and split in sections 2021-02-08 15:19:09 +01:00
3250a600c9 Feat: start the layout for create_exam 2021-01-27 16:17:44 +01:00
589d63ff29 Feat: not showing all columns in bigtable and fixe first columns 2021-01-27 16:16:54 +01:00
429fed6a1e Feat: default values for elements 2021-01-24 06:53:06 +01:00
1255bf4b9e Fix: remove useless print 2021-01-23 06:54:19 +01:00
1fe7665753 Merge branch 'dev' of git_opytex:/lafrite/recopytex into dev 2021-01-22 11:14:34 +01:00
e08e4a32a8 Feat: exam creation page 2021-01-22 11:13:35 +01:00
b737612adb Feat: Start display summary 2021-01-22 05:39:14 +01:00
9c19e2ac56 Feat: New page with input fields 2021-01-21 22:17:49 +01:00
eb60734c26 Fix: remove useless import 2021-01-21 22:17:33 +01:00
329bcc460c Fix: calculer -> chercher 2021-01-21 22:17:02 +01:00
95fc842c1d Feat: 2nd page to create exam 2021-01-21 15:12:24 +01:00
e0ca1a458b Fix: column id to see student and score_rate 2021-01-21 14:11:39 +01:00
eb1abbe868 Fix: get back exam graphs 2021-01-21 14:01:57 +01:00
412e624791 Merge remote-tracking branch 'origin/dev' into dev 2021-01-21 09:57:33 +01:00
e8bf0b3f0a Fix: name and bareme in final_score_table and describe rounding 2021-01-21 09:52:49 +01:00
c057fa11e7 Feat: stop rounding score at 0.5 2021-01-21 09:52:49 +01:00
e15119605f Merge branch 'dev' of git_opytex:/lafrite/recopytex into dev 2021-01-21 09:38:58 +01:00
494567cdb5 Merge branch 'dev' of git_opytex:/lafrite/recopytex into dev 2021-01-21 09:25:58 +01:00
84fcee625d Feat: split dashboard 2021-01-20 20:54:59 +01:00
f62c898162 Fix: remove unecessary import 2021-01-20 20:51:22 +01:00
7955b989b4 Fix: missing category (0) in final_score plot 2021-01-17 22:26:16 +01:00
4f14e3518c Fix: concatenate index for competence plot 2021-01-17 22:21:58 +01:00
4bf8f4003e Feat: remove bootstrap and replace it with css 2021-01-17 22:04:52 +01:00
a14d47b15c Feat: Clean empty fig 2021-01-15 17:49:30 +01:00
09ac9f01f8 Feat: add competence fig and better error management 2021-01-15 13:48:57 +01:00
41 changed files with 1502 additions and 1239 deletions

View File

@@ -0,0 +1,5 @@
Trimestre,Nom,Date,Exercice,Question,Competence,Domaine,Commentaire,Bareme,Est_nivele,Star Tice,Umberto Dingate,Starlin Crangle,Humbert Bourcq,Gabriella Handyside,Stewart Eaves,Erick Going,Ase Praton,Rollins Planks,Dunstan Sarjant,Stacy Guiton,Ange Stanes,Amabelle Elleton,Darn Broomhall,Dyan Chatto,Keane Rennebach,Nari Paulton,Brandy Wase,Jaclyn Firidolfi,Violette Lockney
1,DS,12/01/2021,Exercice 1,1,Calculer,Plop,Coucou,1,1,,,1,0,1,2,3,0,3,3,2,,1,,,,,,,
1,DS,12/01/2021,Exercice 1,2,Calculer,C'est trop chouette!,Coucou,1,1,,,1,2,,,3,3,,,,,2,,,,,,,
1,DS,12/01/2021,Exercice 1,3,Calculer,Null,Coucou,1,1,,,,3,2,,,,,,,,3,,,,,,,
1,DS,12/01/2021,Exercice 1,3,Calculer,Nié,DChic,1,1,,,,2,.,,,,,,,,,,,,,,,
1 Trimestre Nom Date Exercice Question Competence Domaine Commentaire Bareme Est_nivele Star Tice Umberto Dingate Starlin Crangle Humbert Bourcq Gabriella Handyside Stewart Eaves Erick Going Ase Praton Rollins Planks Dunstan Sarjant Stacy Guiton Ange Stanes Amabelle Elleton Darn Broomhall Dyan Chatto Keane Rennebach Nari Paulton Brandy Wase Jaclyn Firidolfi Violette Lockney
2 1 DS 12/01/2021 Exercice 1 1 Calculer Plop Coucou 1 1 1 0 1 2 3 0 3 3 2 1
3 1 DS 12/01/2021 Exercice 1 2 Calculer C'est trop chouette! Coucou 1 1 1 2 3 3 2
4 1 DS 12/01/2021 Exercice 1 3 Calculer Null Coucou 1 1 3 2 3
5 1 DS 12/01/2021 Exercice 1 3 Calculer Nié DChic 1 1 2 .

View File

@@ -0,0 +1,5 @@
Trimestre,Nom,Date,Exercice,Question,Competence,Domaine,Commentaire,Bareme,Est_nivele,Star Tice,Umberto Dingate,Starlin Crangle,Humbert Bourcq,Gabriella Handyside,Stewart Eaves,Erick Going,Ase Praton,Rollins Planks,Dunstan Sarjant,Stacy Guiton,Ange Stanes,Amabelle Elleton,Darn Broomhall,Dyan Chatto,Keane Rennebach,Nari Paulton,Brandy Wase,Jaclyn Firidolfi,Violette Lockney
1,DS6,22/01/2021,Exercice 1,Sait pas,,,,,,,,,,,,,,,,,,,,,,,,,
1,DS6,22/01/2021,Exercice 1,Ha,,,,,,,,,,,,,,,,,,,,,,,,,
1,DS6,22/01/2021,Exercice 1,,,,,,,,,,,,,,,,,,,,,,,,,,
1,DS6,22/01/2021,Exercice 2,grr,,,,,,,,,,,,,,,,,,,,,,,,,
1 Trimestre Nom Date Exercice Question Competence Domaine Commentaire Bareme Est_nivele Star Tice Umberto Dingate Starlin Crangle Humbert Bourcq Gabriella Handyside Stewart Eaves Erick Going Ase Praton Rollins Planks Dunstan Sarjant Stacy Guiton Ange Stanes Amabelle Elleton Darn Broomhall Dyan Chatto Keane Rennebach Nari Paulton Brandy Wase Jaclyn Firidolfi Violette Lockney
2 1 DS6 22/01/2021 Exercice 1 Sait pas
3 1 DS6 22/01/2021 Exercice 1 Ha
4 1 DS6 22/01/2021 Exercice 1
5 1 DS6 22/01/2021 Exercice 2 grr

View File

@@ -3,30 +3,11 @@ source: ./
output: ./
templates: templates/
competences:
Calculer:
name: Calculer
abrv: Cal
Représenter:
name: Représenter
abrv: Rep
Modéliser:
name: Modéliser
abrv: Mod
Raisonner:
name: Raisonner
abrv: Rai
Calculer:
name: Calculer
abrv: Cal
Communiquer:
name: Communiquer
abrv: Com
tribes:
- name: Tribe1
type: Type1
students: tribe1.csv
- name: Tribe2
students: tribe2.csv
Tribe1:
name: Tribe1
type: Type1
students: tribe1.csv
Tribe2:
name: Tribe2
students: tribe2.csv

View File

@@ -1,4 +0,0 @@
---
source: sheets/
output: reports/
templates: templates/

View File

@@ -1,5 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
from .csv_extraction import flat_df_students, flat_df_for
from .df_marks_manip import pp_q_scores

View File

@@ -1,30 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
NO_ST_COLUMNS = {
"term": "Trimestre",
"assessment": "Nom",
"date": "Date",
"exercise": "Exercice",
"question": "Question",
"competence": "Competence",
"theme": "Domaine",
"comment": "Commentaire",
"score_rate": "Bareme",
"is_leveled": "Est_nivele",
}
COLUMNS = {
**NO_ST_COLUMNS,
"student": "Eleve",
"score": "Score",
"mark": "Note",
"level": "Niveau",
"normalized": "Normalise",
}
VALIDSCORE = {
"NOTFILLED": "", # The item is not scored yet
"NOANSWER": ".", # Student gives no answer (this score will impact the fianl mark)
"ABS": "a", # Student has absent (this score won't be impact the final mark)
}

View File

@@ -1,119 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
""" Extracting data from xlsx files """
import pandas as pd
from .config import NO_ST_COLUMNS, COLUMNS, VALIDSCORE
pd.set_option("Precision", 2)
def try_replace(x, old, new):
try:
return str(x).replace(old, new)
except ValueError:
return x
def extract_students(df, no_student_columns=NO_ST_COLUMNS.values()):
"""Extract the list of students from df
:param df: the dataframe
:param no_student_columns: columns that are not students
:return: list of students
"""
students = df.columns.difference(no_student_columns)
return students
def flat_df_students(
df, no_student_columns=NO_ST_COLUMNS.values(), postprocessing=True
):
"""Flat the dataframe by returning a dataframe with on student on each line
:param df: the dataframe (one row per questions)
:param no_student_columns: columns that are not students
:return: dataframe with one row per questions and students
Columns of csv files:
- NO_ST_COLUMNS meta data on questions
- one for each students
This function flat student's columns to "student" and "score"
"""
students = extract_students(df, no_student_columns)
scores = []
for st in students:
scores.append(
pd.melt(
df,
id_vars=no_student_columns,
value_vars=st,
var_name=COLUMNS["student"],
value_name=COLUMNS["score"],
).dropna(subset=[COLUMNS["score"]])
)
if postprocessing:
return postprocess(pd.concat(scores))
return pd.concat(scores)
def flat_df_for(
df, student, no_student_columns=NO_ST_COLUMNS.values(), postprocessing=True
):
"""Extract the data only for one student
:param df: the dataframe (one row per questions)
:param no_student_columns: columns that are not students
:return: dataframe with one row per questions and students
Columns of csv files:
- NO_ST_COLUMNS meta data on questions
- one for each students
"""
students = extract_students(df, no_student_columns)
if student not in students:
raise KeyError("This student is not in the table")
st_df = df[list(no_student_columns) + [student]]
st_df = st_df.rename(columns={student: COLUMNS["score"]}).dropna(
subset=[COLUMNS["score"]]
)
if postprocessing:
return postprocess(st_df)
return st_df
def postprocess(df):
"""Postprocessing score dataframe
- Replace na with an empty string
- Replace "NOANSWER" with -1
- Turn commas number to dot numbers
"""
df[COLUMNS["question"]].fillna("", inplace=True)
df[COLUMNS["exercise"]].fillna("", inplace=True)
df[COLUMNS["comment"]].fillna("", inplace=True)
df[COLUMNS["competence"]].fillna("", inplace=True)
df[COLUMNS["score"]] = pd.to_numeric(
df[COLUMNS["score"]]
.replace(VALIDSCORE["NOANSWER"], -1)
.apply(lambda x: try_replace(x, ",", "."))
)
df[COLUMNS["score_rate"]] = pd.to_numeric(
df[COLUMNS["score_rate"]].apply(lambda x: try_replace(x, ",", ".")),
errors="coerce",
)
return df
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

View File

@@ -0,0 +1,20 @@
#!/usr/bin/env python
# encoding: utf-8
import dash
import flask
from .layout.layout import layout
server = flask.Flask(__name__)
app = dash.Dash(
__name__,
server=server,
suppress_callback_exceptions=True,
meta_tags=[{"name": "viewport", "content": "width=device-width, initial-scale=1"}],
)
app.layout = layout
server = app.server

View File

@@ -0,0 +1,23 @@
#!/usr/bin/env python
# encoding: utf-8
def highlight_scores(highlight_columns, score_color):
""" Cells style in a datatable for scores
:param highlight_columns: columns to highlight
:param value_color: dictionnary {"score": "color"}
"""
hight = []
for v, color in score_color.items():
if v:
hight += [
{
"if": {"filter_query": "{{{}}} = {}".format(col, v), "column_id": col},
"backgroundColor": color,
"color": "white",
}
for col in highlight_columns
]
return hight

View File

@@ -1,341 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
import dash
import dash_html_components as html
import dash_core_components as dcc
import dash_table
from dash.exceptions import PreventUpdate
import plotly.graph_objects as go
from pathlib import Path
from datetime import datetime
import pandas as pd
import numpy as np
import dash_bootstrap_components as dbc
from .. import flat_df_students, pp_q_scores
from ..config import NO_ST_COLUMNS
from ..scripts.getconfig import config, CONFIGPATH
COLORS = {
".": "black",
0: "#E7472B",
1: "#FF712B",
2: "#F2EC4C",
3: "#68D42F",
}
app = dash.Dash(external_stylesheets=[dbc.themes.SIMPLEX])
# external_stylesheets = ["https://codepen.io/chriddyp/pen/bWLwgP.css"]
# app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
# app = dash.Dash(__name__)
app.layout = html.Div(
children=[
dbc.NavbarSimple(
children=[
dbc.Alert("Dernière sauvegarde", id="lastsave", color="success"),
],
brand="Analyse des notes",
brand_href="#",
color="success",
dark=True,
),
html.Br(),
dbc.Row(
[
dbc.Col(
[
"Classe: ",
dbc.Select(
id="tribe",
options=[
{"label": t["name"], "value": t["name"]}
for t in config["tribes"]
],
value=config["tribes"][0]["name"],
),
]
),
dbc.Col(
[
"Evaluation: ",
dbc.Select(id="csv"),
]
),
],
),
html.Br(),
dbc.Row(
[
dbc.Col(
dash_table.DataTable(
id="final_score_table",
columns=[
{"id": "Élève", "name": "Élève"},
{"id": "Note", "name": "Note"},
{"id": "Barème", "name": "Bareme"},
],
data=[],
style_data_conditional=[
{
"if": {"row_index": "odd"},
"backgroundColor": "rgb(248, 248, 248)",
}
],
style_header={
"backgroundColor": "rgb(230, 230, 230)",
"fontWeight": "bold",
},
style_data={
"width": "100px",
"maxWidth": "100px",
"minWidth": "100px",
},
)
),
dbc.Col(
[
dash_table.DataTable(
id="final_score_describe",
),
dcc.Graph(
id="fig_assessment_hist",
),
# dcc.Graph(id="fig_competences"),
]
),
],
),
html.Br(),
html.Div(
[
dash_table.DataTable(
id="scores_table",
columns=[{"id": c, "name": c} for c in NO_ST_COLUMNS.values()],
style_cell={
"whiteSpace": "normal",
"height": "auto",
},
style_data_conditional=[],
editable=True,
),
dbc.Button("Ajouter un élément", id="btn_add_element"),
]
),
dcc.Store(id="final_score"),
]
)
@app.callback(
[
dash.dependencies.Output("csv", "options"),
dash.dependencies.Output("csv", "value"),
],
[dash.dependencies.Input("tribe", "value")],
)
def update_csvs(value):
if not value:
raise PreventUpdate
p = Path(value)
csvs = list(p.glob("*.csv"))
try:
return [{"label": str(c), "value": str(c)} for c in csvs], str(csvs[0])
except IndexError:
return []
@app.callback(
[
dash.dependencies.Output("final_score", "data"),
],
[dash.dependencies.Input("scores_table", "data")],
)
def update_final_scores(data):
if not data:
raise PreventUpdate
try:
scores = pd.DataFrame.from_records(data)
scores = flat_df_students(scores).dropna(subset=["Score"])
scores = pp_q_scores(scores)
assessment_scores = scores.groupby(["Eleve"]).agg(
{"Note": "sum", "Bareme": "sum"}
)
return [assessment_scores.reset_index().to_dict("records")]
except KeyError:
raise PreventUpdate
@app.callback(
[
dash.dependencies.Output("final_score_table", "columns"),
dash.dependencies.Output("final_score_table", "data"),
],
[dash.dependencies.Input("final_score", "data")],
)
def update_final_scores_table(data):
assessment_scores = pd.DataFrame.from_records(data)
return [
{"id": c, "name": c} for c in assessment_scores.columns
], assessment_scores.to_dict("records")
@app.callback(
[
dash.dependencies.Output("final_score_describe", "columns"),
dash.dependencies.Output("final_score_describe", "data"),
],
[dash.dependencies.Input("final_score", "data")],
)
def update_final_scores_descr(data):
desc = pd.DataFrame.from_records(data)["Note"].describe()
return [{"id": c, "name": c} for c in desc.keys()], [desc.to_dict()]
@app.callback(
[
dash.dependencies.Output("fig_assessment_hist", "figure"),
],
[dash.dependencies.Input("final_score", "data")],
)
def update_final_scores_hist(data):
assessment_scores = pd.DataFrame.from_records(data)
ranges = np.linspace(
0, assessment_scores.Bareme.max(), int(assessment_scores.Bareme.max() * 2 + 1)
)
bins = pd.cut(assessment_scores["Note"], ranges)
assessment_scores["Bin"] = bins
assessment_grouped = (
assessment_scores.reset_index()
.groupby("Bin")
.agg({"Bareme": "count", "Eleve": lambda x: "\n".join(x)})
)
assessment_grouped.index = assessment_grouped.index.map(lambda i: i.right)
fig = go.Figure()
fig.add_bar(
x=assessment_grouped.index,
y=assessment_grouped.Bareme,
text=assessment_grouped.Eleve,
textposition="auto",
hovertemplate="",
marker_color="#4E89DE",
)
fig.update_layout(
height=300,
margin=dict(l=5, r=5, b=5, t=5),
)
return [fig]
# @app.callback(
# [
# dash.dependencies.Output("fig_competences", "figure"),
# ],
# [dash.dependencies.Input("scores_table", "data")],
# )
# def update_competence_fig(data):
# scores = pd.DataFrame.from_records(data)
# scores = flat_df_students(scores).dropna(subset=["Score"])
# scores = pp_q_scores(scores)
# pt = pd.pivot_table(
# scores,
# index=["Exercice", "Question", "Commentaire"],
# columns="Score",
# aggfunc="size",
# fill_value=0,
# )
# for i in {i for i in pt.index.get_level_values(0)}:
# pt.loc[(str(i), "", ""), :] = ""
# pt.sort_index(inplace=True)
# index = (
# pt.index.get_level_values(0)
# + ":"
# + pt.index.get_level_values(1)
# + " "
# + pt.index.get_level_values(2)
# )
#
# fig = go.Figure()
# bars = [
# {"score": -1, "name": "Pas de réponse", "color": COLORS["."]},
# {"score": 0, "name": "Faut", "color": COLORS[0]},
# {"score": 1, "name": "Peu juste", "color": COLORS[1]},
# {"score": 2, "name": "Presque juste", "color": COLORS[2]},
# {"score": 3, "name": "Juste", "color": COLORS[3]},
# ]
# for b in bars:
# try:
# fig.add_bar(
# x=index, y=pt[b["score"]], name=b["name"], marker_color=b["color"]
# )
# except KeyError:
# pass
# fig.update_layout(barmode="relative")
# return [fig]
@app.callback(
[
dash.dependencies.Output("lastsave", "children"),
dash.dependencies.Output("lastsave", "color"),
],
[
dash.dependencies.Input("scores_table", "data"),
dash.dependencies.State("csv", "value"),
],
)
def save_scores(data, csv):
try:
scores = pd.DataFrame.from_records(data)
scores.to_csv(csv, index=False)
except:
return [f"Soucis pour sauvegarder à {datetime.today()} dans {csv}"], "warning"
else:
return [f"Dernière sauvegarde {datetime.today()} dans {csv}"], "success"
def highlight_value(df):
""" Cells style """
hight = []
for v, color in COLORS.items():
hight += [
{
"if": {"filter_query": "{{{}}} = {}".format(col, v), "column_id": col},
"backgroundColor": color,
"color": "white",
}
for col in df.columns
if col not in NO_ST_COLUMNS.values()
]
return hight
@app.callback(
[
dash.dependencies.Output("scores_table", "columns"),
dash.dependencies.Output("scores_table", "data"),
dash.dependencies.Output("scores_table", "style_data_conditional"),
],
[
dash.dependencies.Input("csv", "value"),
dash.dependencies.Input("btn_add_element", "n_clicks"),
dash.dependencies.State("scores_table", "data"),
],
)
def update_scores_table(csv, add_element, data):
ctx = dash.callback_context
if ctx.triggered[0]['prop_id'] == "csv.value":
stack = pd.read_csv(csv, encoding="UTF8")
elif ctx.triggered[0]['prop_id'] == "btn_add_element.n_clicks":
stack = pd.DataFrame.from_records(data)
infos = pd.DataFrame.from_records([{k: stack.iloc[-1][k] for k in NO_ST_COLUMNS.values()}])
stack = stack.append(infos)
return (
[{"id": c, "name": c} for c in stack.columns],
stack.to_dict("records"),
highlight_value(stack),
)

View File

@@ -0,0 +1,8 @@
#!/usr/bin/env python
# encoding: utf-8
from .app import app, server
from .routes import render_page_content
if __name__ == "__main__":
app.run_server(debug=True)

View File

@@ -0,0 +1,9 @@
#!/usr/bin/env python
# encoding: utf-8
import dash_html_components as html
import dash_core_components as dcc
content = html.Div(id="page-content")
layout = html.Div([dcc.Location(id="url"), content])

View File

@@ -0,0 +1,112 @@
#!/usr/bin/env python
# encoding: utf-8
import dash_html_components as html
import dash_core_components as dcc
from .models import get_tribes, get_exams
from .callbacks import *
layout = html.Div(
children=[
html.Header(
children=[
html.H1("Analyse des notes"),
html.P("Dernière sauvegarde", id="lastsave"),
],
),
html.Main(
children=[
html.Section(
children=[
html.Div(
children=[
"Classe: ",
dcc.Dropdown(
id="tribe",
options=[
{"label": t["name"], "value": t["name"]}
for t in get_tribes().values()
],
value=next(iter(get_tribes().values()))["name"],
),
],
),
html.Div(
children=[
"Evaluation: ",
dcc.Dropdown(id="exam_select"),
],
),
],
id="selects",
),
html.Section(
children=[
html.Div(
children=[
dash_table.DataTable(
id="final_score_table",
columns=[
{"name": "Étudiant", "id": "student_name"},
{"name": "Note", "id": "mark"},
{"name": "Barème", "id": "score_rate"},
],
)
],
id="final_score_table_container",
),
html.Div(
children=[
dash_table.DataTable(
id="score_statistics_table",
columns=[],
)
],
id="score_statistics_table_container",
),
html.Div(
children=[
dcc.Graph(
id="fig_exam_histo",
config={"displayModeBar": False},
)
],
id="fig_exam_histo_container",
),
html.Div(
children=[
dcc.Graph(
id="fig_questions_bar",
config={"displayModeBar": False},
)
],
id="fig_questions_bar_container",
),
],
id="analysis",
),
html.Section(
children=[
dash_table.DataTable(
id="scores_table",
columns=[],
style_data_conditional=[],
fixed_columns={},
editable=True,
style_table={"minWidth": "100%"},
style_cell={
"minWidth": "100px",
"width": "100px",
"maxWidth": "100px",
"overflow": "hidden",
"textOverflow": "ellipsis",
},
)
],
id="edit",
),
],
),
dcc.Store(id="scores"),
],
)

View File

@@ -0,0 +1,216 @@
#!/usr/bin/env python
# encoding: utf-8
from dash.dependencies import Input, Output, State
from dash.exceptions import PreventUpdate
import plotly.graph_objects as go
import dash_table
import json
import pandas as pd
import numpy as np
from recopytex.dashboard.app import app
from recopytex.dashboard.common.formating import highlight_scores
from .models import (
get_tribes,
get_exams,
get_unstack_scores,
get_students_from_exam,
get_score_colors,
get_level_color_bar,
score_to_final_mark,
stack_scores,
pivot_score_on,
)
@app.callback(
[
Output("exam_select", "options"),
Output("exam_select", "value"),
],
[Input("tribe", "value")],
)
def update_exams_choices(tribe):
if not tribe:
raise PreventUpdate
exams = get_exams(tribe)
exams.reset_index(inplace=True)
if not exams.empty:
return [
{"label": e["name"], "value": e.to_json()} for i, e in exams.iterrows()
], exams.loc[0].to_json()
return [], None
@app.callback(
[
Output("scores_table", "columns"),
Output("scores_table", "data"),
Output("scores_table", "style_data_conditional"),
Output("scores_table", "fixed_columns"),
],
[
Input("exam_select", "value"),
],
)
def update_scores_store(exam):
if not exam:
return [[], [], [], {}]
exam = pd.DataFrame.from_dict([json.loads(exam)])
scores = get_unstack_scores(exam)
fixed_columns = [
"exercise",
"question",
"competence",
"theme",
"comment",
"score_rate",
"is_leveled",
]
students = list(get_students_from_exam(exam))
columns = fixed_columns + students
score_color = get_score_colors()
return [
[{"id": c, "name": c} for c in columns],
scores.to_dict("records"),
highlight_scores(students, score_color),
{"headers": True, "data": len(fixed_columns)},
]
@app.callback(
[
Output("final_score_table", "data"),
],
[
Input("scores_table", "data"),
],
)
def update_finale_score_table(scores):
scores_df = pd.DataFrame.from_records(scores)
stacked_scores = stack_scores(scores_df)
return score_to_final_mark(stacked_scores)
@app.callback(
[
Output("score_statistics_table", "columns"),
Output("score_statistics_table", "data"),
],
[
Input("final_score_table", "data"),
],
)
def update_statictics_table(finale_score):
df = pd.DataFrame.from_records(finale_score)
statistics = df["mark"].describe().to_frame().T
return [
[{"id": c, "name": c} for c in statistics.columns],
statistics.to_dict("records"),
]
@app.callback(
[
Output("fig_exam_histo", "figure"),
],
[
Input("final_score_table", "data"),
],
)
def update_exam_histo(finale_scores):
scores = pd.DataFrame.from_records(finale_scores)
if scores.empty:
return [go.Figure(data=[go.Scatter(x=[], y=[])])]
ranges = np.linspace(
-0.5,
scores["score_rate"].max(),
int(scores["score_rate"].max() * 2 + 2),
)
bins = pd.cut(scores["mark"], ranges)
scores["Bin"] = bins
grouped = (
scores.reset_index()
.groupby("Bin")
.agg({"score_rate": "count", "student_name": lambda x: "\n".join(x)})
)
grouped.index = grouped.index.map(lambda i: i.right)
fig = go.Figure()
fig.add_bar(
x=grouped.index,
y=grouped["score_rate"],
text=grouped["student_name"],
textposition="auto",
hovertemplate="",
marker_color="#4E89DE",
)
fig.update_layout(
height=300,
margin=dict(l=5, r=5, b=5, t=5),
)
return [fig]
@app.callback(
[
Output("fig_questions_bar", "figure"),
],
[
Input("scores_table", "data"),
],
)
def update_questions_bar(finale_scores):
scores = pd.DataFrame.from_records(finale_scores)
scores = stack_scores(scores)
if scores.empty:
return [go.Figure(data=[go.Scatter(x=[], y=[])])]
pt = pivot_score_on(scores, ["exercise", "question", "comment"], "score")
# separation between exercises
for i in {i for i in pt.index.get_level_values(0)}:
pt.loc[(str(i), "", ""), :] = ""
pt.sort_index(inplace=True)
# Bar label
index = (
pt.index.get_level_values(0).map(str)
+ ":"
+ pt.index.get_level_values(1).map(str)
+ " "
+ pt.index.get_level_values(2).map(str)
)
fig = go.Figure()
bars = get_level_color_bar()
for b in bars:
try:
fig.add_bar(
x=index, y=pt[b["score"]], name=b["name"], marker_color=b["color"]
)
except KeyError:
pass
fig.update_layout(barmode="relative")
fig.update_layout(
height=500,
margin=dict(l=5, r=5, b=5, t=5),
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
)
)
return [fig]

View File

@@ -0,0 +1,128 @@
#!/use/bin/env python
# encoding: utf-8
from recopytex.database.filesystem.loader import CSVLoader
from recopytex.datalib.dataframe import column_values_to_column
import recopytex.datalib.on_score_column as on_column
import pandas as pd
LOADER = CSVLoader("./test_confia.ml")
SCORES_CONFIG = LOADER.get_config()["scores"]
def unstack_scores(scores):
"""Put student_name values to columns
:param scores: Score dataframe with one line per score
:returns: Scrore dataframe with student_name in columns
"""
kept_columns = [col for col in LOADER.score_columns if col != "score"]
return column_values_to_column("student_name", "score", kept_columns, scores)
def stack_scores(scores):
"""Student columns are melt to rows with student_name column
:param scores: Score dataframe with student_name in columns
:returns: Scrore dataframe with one line per score
"""
kept_columns = [
c for c in LOADER.score_columns if c not in ["score", "student_name"]
]
student_names = [c for c in scores.columns if c not in kept_columns]
return pd.melt(
scores,
id_vars=kept_columns,
value_vars=student_names,
var_name="student_name",
value_name="score",
)
def get_tribes():
return LOADER.get_tribes()
def get_exams(tribe):
return LOADER.get_exams([tribe])
def get_record_scores(exam):
return LOADER.get_exam_scores(exam)
def get_unstack_scores(exam):
flat_scores = LOADER.get_exam_scores(exam)
return unstack_scores(flat_scores)
def get_students_from_exam(exam):
flat_scores = LOADER.get_exam_scores(exam)
return flat_scores["student_name"].unique()
def get_score_colors():
score_color = {}
for key, score in SCORES_CONFIG.items():
score_color[score["value"]] = score["color"]
return score_color
def get_level_color_bar():
return [
{"score": str(s["value"]), "name": s["comment"], "color": s["color"]}
for s in SCORES_CONFIG.values()
]
is_none_score = lambda x: on_column.is_none_score(x, SCORES_CONFIG)
format_score = lambda x: on_column.format_score(x, SCORES_CONFIG)
score_to_numeric_score = lambda x: on_column.score_to_numeric_score(x, SCORES_CONFIG)
score_to_mark = lambda x: on_column.score_to_mark(
x, max([v["value"] for v in SCORES_CONFIG.values() if isinstance(v["value"], int)])
)
def filter_clean_score(scores):
filtered_scores = scores[~scores.apply(is_none_score, axis=1)]
filtered_scores = filtered_scores.assign(
score=filtered_scores.apply(format_score, axis=1)
)
return filtered_scores
def score_to_final_mark(scores):
""" Compute marks then reduce to final mark per student """
filtered_scores = filter_clean_score(scores)
filtered_scores = filtered_scores.assign(
score=filtered_scores.apply(score_to_numeric_score, axis=1)
)
filtered_scores = filtered_scores.assign(
mark=filtered_scores.apply(score_to_mark, axis=1)
)
final_score = filtered_scores.groupby(["student_name"])[
["mark", "score_rate"]
].sum()
return [final_score.reset_index().to_dict("records")]
def pivot_score_on(scores, index, columns, aggfunc="size"):
"""Pivot scores on index, columns with aggfunc
It assumes thant scores are levels
"""
filtered_scores = filter_clean_score(scores)
filtered_scores["score"] = filtered_scores["score"].astype(str)
pt = pd.pivot_table(
filtered_scores,
index=index,
columns=columns,
aggfunc=aggfunc,
fill_value=0,
)
return pt

View File

@@ -0,0 +1,50 @@
#!/usr/bin/env python
# encoding: utf-8
import dash_html_components as html
from recopytex.database.filesystem.loader import CSVLoader
from .models import get_tribes, get_exams, get_students
loader = CSVLoader("./test_config.yml")
def listing(elements, formating=lambda x: x):
return html.Ul(
children=[html.Li(children=formating(element)) for element in elements]
)
def format_tribe(tribe):
children = [html.H3(tribe["name"])]
exams = loader.get_exams([tribe["name"]])
if exams.empty:
children.append(html.P("Pas d'évaluation"))
else:
exams_html = listing([exam for id, exam in exams.iterrows()], format_exam)
children.append(exams_html)
return children
def format_exam(exam):
children = [html.P(exam["name"])]
return children
layout = html.Div(
children=[
html.H1("Recopytex"),
html.H2("Tribes"),
html.Div(
children=[listing(loader.get_tribes().values(), format_tribe)],
id="tribes",
),
html.H2("Config"),
html.Div(
children=[
html.P(str(loader.get_config())),
],
id="config",
),
]
)

View File

@@ -0,0 +1,6 @@
#!/usr/bin/env python
# encoding: utf-8
from dash.dependencies import Input, Output
from recopytex.dashboard.app import app

View File

@@ -0,0 +1,14 @@
#!/usr/bin/env python
# encoding: utf-8
def get_tribes(loader):
return loader.get_tribes()
def get_exams(loader, tribe):
return loader.get_exams([tribe])
def get_students(loader, tribe):
return loader.get_students([tribe])

View File

@@ -0,0 +1,27 @@
#!/usr/bin/env python
# encoding: utf-8
from dash.dependencies import Input, Output
from .app import app
from .pages.home import app as home
from .pages.exams_scores import app as exams_scores
import dash_html_components as html
@app.callback(Output("page-content", "children"), [Input("url", "pathname")])
def render_page_content(pathname):
if pathname == "/":
return home.layout
elif pathname == "/exams/scores/":
return exams_scores.layout
# elif pathname == iris_page_location:
# return iris.layout
# # If the user tries to reach a different page, return a 404 message
return html.Div(
[
html.H1("404: Not found", className="text-danger"),
html.Hr(),
html.P(f"The pathname {pathname} was not recognised..."),
]
)

View File

@@ -0,0 +1,88 @@
#!/usr/bin/env python
# encoding: utf-8
from abc import ABC, abstractmethod
import yaml
"""
Adapter to pull data from the filesystem
# Loader
# Writer
"""
class Loader(ABC):
"""Load data from source"""
CONFIG = {}
def __init__(self, configfile=""):
"""Init loader
:param configfile: yaml file with informations on data source
"""
self._config = self.CONFIG
if configfile.endswith(".yml"):
with open(configfile, "r") as config:
self._config.update(yaml.load(config, Loader=yaml.FullLoader))
def get_config(self):
""" Get config"""
return self._config
@abstractmethod
def get_tribes(self):
""" Get tribes list """
pass
@abstractmethod
def get_exams(self, tribes=[]):
"""Get exams list
:param tribes: get only exams for those tribes
"""
pass
@abstractmethod
def get_students(self, tribes=[]):
"""Get student list
:param filters: list of filters
"""
pass
@abstractmethod
def get_exam_questions(self, exams=[]):
"""Get questions for the exam
:param exams: questions for those exams only
"""
pass
@abstractmethod
def get_questions_scores(self, questions=[]):
"""Get scores of those questions
:param questions: score for those questions
"""
pass
# @abstractmethod
# def get_student_scores(self, student):
# """Get scores of the student
# :param student:
# """
# pass
class Writer(ABC):
""" Write datas to the source """
def __init__(self):
pass

View File

@@ -0,0 +1,15 @@
#!/usr/bin/env python
# encoding: utf-8
"""
Store data using filesystem for organisation, csv for scores
## Organisation
- tribe1.csv # list of students for the tribe
- tribe1/
- exam1.csv # questions and scores for exam1
- exam1.yml # Extra information about exam1
- exam2.csv # questions and scores for exam2
"""

View File

@@ -0,0 +1,75 @@
---
source: ./ # basepath where to start
competences: # Competences
Chercher:
name: Chercher
abrv: Cher
Représenter:
name: Représenter
abrv: Rep
Modéliser:
name: Modéliser
abrv: Mod
Raisonner:
name: Raisonner
abrv: Rai
Calculer:
name: Calculer
abrv: Cal
Communiquer:
name: Communiquer
abrv: Com
scores: #
BAD: # Everything is bad
value: 0
numeric_value: 0
color: "#E7472B"
comment: Faux
FEW: # Few good things
value: 1
numeric_value: 1
color: "#FF712B"
comment: Peu juste
NEARLY: # Nearly good but things are missing
value: 2
numeric_value: 2
color: "#F2EC4C"
comment: Presque juste
GOOD: # Everything is good
value: 3
numeric_value: 3
color: "#68D42F"
comment: Juste
NOTFILLED: # The item is not scored yet
value: ""
numeric_value: None
color: white
comment: En attente
NOANSWER: # Student gives no answer (count as 0)
value: "."
numeric_value: 0
color: black
comment: Pas de réponse
ABS: # Student has absent (this score won't be impact the final mark)
value: a
numeric_value: None
color: lightgray
comment: Non noté
csv_fields: # dataframe_field: csv_field
term: Trimestre
exam: Nom
date: Date
exercise: Exercice
question: Question
competence: Competence
theme: Domaine
comment: Commentaire
score_rate: Bareme
is_leveled: Est_nivele
id_templates:
exam: "{name}_{tribe}"
question: "{exam_id}_{exercise}_{question}_{comment}"

View File

@@ -0,0 +1,52 @@
#!/usr/bin/env python
# encoding: utf-8
import pandas as pd
from pathlib import Path
from unidecode import unidecode
__all__ = ["list_csvs", "extract_fields"]
def list_csvs(path):
"""list csv files in path
:example:
>>> list_csvs("./example/Tribe1/")
[PosixPath('example/Tribe1/210112_DS.csv'), PosixPath('example/Tribe1/210122_DS6.csv')]
>>> list_csvs("./example/Tribe1")
[PosixPath('example/Tribe1/210112_DS.csv'), PosixPath('example/Tribe1/210122_DS6.csv')]
"""
return list(Path(path).glob("*.csv"))
def extract_fields(csv_filename, fields=[], remove_duplicates=True):
"""Extract fields in csv
:param csv_filename: csv filename (with header)
:param fields: list of fields to extract (all fields if empty list - default)
:param remove_duplicates: keep uniques rows (default True)
:example:
>>> extract_fields("./example/Tribe1/210122_DS6.csv", ["Trimestre", "Nom", "Date"])
Trimestre Nom Date
0 1 DS6 22/01/2021
"""
df = pd.read_csv(csv_filename)
if fields:
df = df[fields]
if remove_duplicates:
return df.drop_duplicates()
return df
def build_id(template, element):
"""Build an id from template to the element
:example:
>>> element = {"name": "pléà", "place": "here", "foo":"bar"}
>>> build_id("{name} {place}", element)
'plea_here'
"""
return unidecode(template.format(**element)).replace(" ", "_")

View File

@@ -0,0 +1,298 @@
#!/usr/bin/env python
# encoding: utf-8
import yaml
import os
import uuid
from pathlib import Path
import pandas as pd
from .. import Loader
from .lib import list_csvs, extract_fields, build_id
DEFAULT_CONFIG_FILE = os.path.join(os.path.dirname(__file__), "default_config.yml")
with open(DEFAULT_CONFIG_FILE, "r") as config:
DEFAULT_CONFIG = yaml.load(config, Loader=yaml.FullLoader)
def maybe_dataframe(datas):
try:
return [e[1] for e in datas.iterrows()]
except AttributeError:
return datas
class CSVLoader(Loader):
"""Loader when scores and metadatas are stored in csv files
:config:
:example:
>>> loader = CSVLoader()
>>> loader.get_config()
{'source': './', 'competences': {'Chercher': {'name': 'Chercher', 'abrv': 'Cher'}, 'Représenter': {'name': 'Représenter', 'abrv': 'Rep'}, 'Modéliser': {'name': 'Modéliser', 'abrv': 'Mod'}, 'Raisonner': {'name': 'Raisonner', 'abrv': 'Rai'}, 'Calculer': {'name': 'Calculer', 'abrv': 'Cal'}, 'Communiquer': {'name': 'Communiquer', 'abrv': 'Com'}}, 'scores': {'BAD': {'value': 0, 'numeric_value': 0, 'color': '#E7472B', 'comment': 'Faux'}, 'FEW': {'value': 1, 'numeric_value': 1, 'color': '#FF712B', 'comment': 'Peu juste'}, 'NEARLY': {'value': 2, 'numeric_value': 2, 'color': '#F2EC4C', 'comment': 'Presque juste'}, 'GOOD': {'value': 3, 'numeric_value': 3, 'color': '#68D42F', 'comment': 'Juste'}, 'NOTFILLED': {'value': '', 'numeric_value': 'None', 'color': 'white', 'comment': 'En attente'}, 'NOANSWER': {'value': '.', 'numeric_value': 0, 'color': 'black', 'comment': 'Pas de réponse'}, 'ABS': {'value': 'a', 'numeric_value': 'None', 'color': 'lightgray', 'comment': 'Non noté'}}, 'csv_fields': {'term': 'Trimestre', 'exam': 'Nom', 'date': 'Date', 'exercise': 'Exercice', 'question': 'Question', 'competence': 'Competence', 'theme': 'Domaine', 'comment': 'Commentaire', 'score_rate': 'Bareme', 'is_leveled': 'Est_nivele'}, 'id_templates': {'exam': '{name}_{tribe}', 'question': '{exam_id}_{exercise}_{question}_{comment}'}}
>>> loader = CSVLoader("./test_config.yml")
>>> loader.get_config()
{'source': './example', 'competences': {'Chercher': {'name': 'Chercher', 'abrv': 'Cher'}, 'Représenter': {'name': 'Représenter', 'abrv': 'Rep'}, 'Modéliser': {'name': 'Modéliser', 'abrv': 'Mod'}, 'Raisonner': {'name': 'Raisonner', 'abrv': 'Rai'}, 'Calculer': {'name': 'Calculer', 'abrv': 'Cal'}, 'Communiquer': {'name': 'Communiquer', 'abrv': 'Com'}}, 'scores': {'BAD': {'value': 0, 'numeric_value': 0, 'color': '#E7472B', 'comment': 'Faux'}, 'FEW': {'value': 1, 'numeric_value': 1, 'color': '#FF712B', 'comment': 'Peu juste'}, 'NEARLY': {'value': 2, 'numeric_value': 2, 'color': '#F2EC4C', 'comment': 'Presque juste'}, 'GOOD': {'value': 3, 'numeric_value': 3, 'color': '#68D42F', 'comment': 'Juste'}, 'NOTFILLED': {'value': '', 'numeric_value': 'None', 'color': 'white', 'comment': 'En attente'}, 'NOANSWER': {'value': '.', 'numeric_value': 0, 'color': 'black', 'comment': 'Pas de réponse'}, 'ABS': {'value': 'a', 'numeric_value': 'None', 'color': 'lightgray', 'comment': 'Non noté'}}, 'csv_fields': {'term': 'Trimestre', 'exam': 'Nom', 'date': 'Date', 'exercise': 'Exercice', 'question': 'Question', 'competence': 'Competence', 'theme': 'Domaine', 'comment': 'Commentaire', 'score_rate': 'Bareme', 'is_leveled': 'Est_nivele'}, 'id_templates': {'exam': '{name}_{tribe}', 'question': '{exam_id}_{exercise}_{question}_{comment}'}, 'output': './output', 'templates': 'templates/', 'tribes': {'Tribe1': {'name': 'Tribe1', 'type': 'Type1', 'students': 'tribe1.csv'}, 'Tribe2': {'name': 'Tribe2', 'students': 'tribe2.csv'}}}
"""
CONFIG = DEFAULT_CONFIG
def get_config(self):
""" Get config """
return self._config
@property
def exam_columns(self):
return pd.Index(["name", "date", "term", "origin", "tribe", "id"])
@property
def question_columns(self):
return pd.Index(
[
"exercise",
"question",
"competence",
"theme",
"comment",
"score_rate",
"is_leveled",
"origin",
"exam_id",
"id",
]
)
@property
def score_columns(self):
return pd.Index(
[
"term",
"exam",
"date",
"exercise",
"question",
"competence",
"theme",
"comment",
"score_rate",
"is_leveled",
"origin",
"exam_id",
"question_id",
"student_name",
"score",
]
)
def rename_columns(self, dataframe):
"""Rename dataframe column to match with `csv_fields`
:param dataframe: the dataframe
:example:
>>> loader = CSVLoader()
>>>
"""
return dataframe.rename(
columns={v: k for k, v in self._config["csv_fields"].items()}
)
def reverse_csv_field(self, keys):
""" Reverse csv field from keys """
return [self._config["csv_fields"][k] for k in keys]
def get_tribes(self, only_names=False):
"""Get tribes list
:example:
>>> loader = CSVLoader("./test_config.yml")
>>> loader.get_tribes()
{'Tribe1': {'name': 'Tribe1', 'type': 'Type1', 'students': 'tribe1.csv'}, 'Tribe2': {'name': 'Tribe2', 'students': 'tribe2.csv'}}
>>> loader.get_tribes(only_names=True)
['Tribe1', 'Tribe2']
"""
if only_names:
return list(self._config["tribes"].keys())
return self._config["tribes"]
def get_exams(self, tribes=[]):
"""Get exams list
:param tribes: get only exams for those tribes
:return: dataframe of exams
:example:
>>> loader = CSVLoader("./test_config.yml")
>>> exams = loader.get_exams(["Tribe1"])
>>> all(exams.columns == loader.exam_columns)
True
>>> exams
name date term origin tribe id
0 DS 12/01/2021 1 example/Tribe1/210112_DS.csv Tribe1 DS_Tribe1
0 DS6 22/01/2021 1 example/Tribe1/210122_DS6.csv Tribe1 DS6_Tribe1
"""
exams = []
for tribe in tribes:
tribe_path = Path(self._config["source"]) / tribe
csvs = list_csvs(tribe_path)
for csv in csvs:
fields = self.reverse_csv_field(["exam", "date", "term"])
exam = extract_fields(csv, fields)
exam = self.rename_columns(exam)
exam = exam.rename(columns={"exam": "name"})
exam["origin"] = str(csv)
exam["tribe"] = tribe
exam["id"] = build_id(
self._config["id_templates"]["exam"], exam.iloc[0]
)
exams.append(exam)
if exams:
return pd.concat(exams)
return pd.DataFrame(columns=["name", "date", "term", "origin", "tribe", "id"])
def get_exam_questions(self, exams=[]):
"""Get questions for exams stored in score_files
:param exams: list or dataframe of exams metadatas (need origin field to find the csv)
:example:
>>> loader = CSVLoader("./test_config.yml")
>>> exams = loader.get_exams(["Tribe1"])
>>> all(loader.get_exam_questions([exams.iloc[0]]).columns == loader.question_columns)
True
>>> questions = loader.get_exam_questions(exams)
>>> questions.iloc[0]
exercise Exercice 1
question 1
competence Calculer
theme Plop
comment Coucou
score_rate 1.0
is_leveled 1.0
origin example/Tribe1/210112_DS.csv
exam_id DS_Tribe1
id DS_Tribe1_Exercice_1_1_Coucou
Name: 0, dtype: object
"""
_exams = maybe_dataframe(exams)
questions = []
for exam in _exams:
fields = self.reverse_csv_field(
[
"exercise",
"question",
"competence",
"theme",
"comment",
"score_rate",
"is_leveled",
]
)
question = extract_fields(exam["origin"], fields)
question = self.rename_columns(question)
question["origin"] = exam["origin"]
question["exam_id"] = exam["id"]
question["id"] = build_id(
self._config["id_templates"]["question"], question.iloc[0]
)
questions.append(question)
return pd.concat(questions)
def get_questions_scores(self, questions=[]):
"""Get scores of those questions
:param questions: list or dataframe of questions metadatas (need origin field to find the csv)
:example:
>>> loader = CSVLoader("./test_config.yml")
>>> exams = loader.get_exams(["Tribe1"])
>>> questions = loader.get_exam_questions(exams)
>>> scores = loader.get_questions_scores(questions)
>>> all(scores.columns == loader.score_columns)
True
>>> scores["student_name"].unique()
array(['Star Tice', 'Umberto Dingate', 'Starlin Crangle',
'Humbert Bourcq', 'Gabriella Handyside', 'Stewart Eaves',
'Erick Going', 'Ase Praton', 'Rollins Planks', 'Dunstan Sarjant',
'Stacy Guiton', 'Ange Stanes', 'Amabelle Elleton',
'Darn Broomhall', 'Dyan Chatto', 'Keane Rennebach', 'Nari Paulton',
'Brandy Wase', 'Jaclyn Firidolfi', 'Violette Lockney'],
dtype=object)
"""
scores = []
group_questions = questions.groupby("origin")
for origin, questions_df in group_questions:
scores_df = pd.read_csv(origin)
scores_df = self.rename_columns(scores_df)
student_names = [
c
for c in scores_df.columns
if c not in self._config["csv_fields"].keys()
]
common_columns = [c for c in questions_df.columns if c in scores_df.columns]
scores_df = pd.merge(scores_df, questions_df, on=common_columns)
kept_columns = [c for c in scores_df if c not in student_names]
scores_df = pd.melt(
scores_df,
id_vars=kept_columns,
value_vars=student_names,
var_name="student_name",
value_name="score",
)
scores_df = scores_df.rename(columns={"id": "question_id"})
scores.append(scores_df)
return pd.concat(scores)
def get_exam_scores(self, exams=[]):
"""Get scores for all question of the exam
:param exams: list or dataframe of exams metadatas (need origin field to find the csv)
:example:
>>> loader = CSVLoader("./test_config.yml")
>>> exams = loader.get_exams(["Tribe1"])
>>> scores = loader.get_exam_scores(exams)
>>> scores.columns
Index(['term', 'exam', 'date', 'exercise', 'question', 'competence', 'theme',
'comment', 'score_rate', 'is_leveled', 'origin', 'exam_id',
'question_id', 'student_name', 'score'],
dtype='object')
"""
questions = self.get_exam_questions(exams)
return self.get_questions_scores(questions)
def get_students(self, tribes=[]):
"""Get student list
:param tribes: concerned tribes
:example:
>>> loader = CSVLoader("./test_config.yml")
>>> tribes = loader.get_tribes()
>>> students = loader.get_students([tribes["Tribe1"]])
>>> students.columns
Index(['Nom', 'email', 'origin', 'tribe'], dtype='object')
"""
students = []
for tribe in tribes:
students_csv = Path(self._config["source"]) / tribe["students"]
students_df = pd.read_csv(students_csv)
students_df["origin"] = students_csv
students_df["tribe"] = tribe["name"]
students.append(students_df)
return pd.concat(students)
def get_student_scores(self, student=[]):
"""Get all scores for students"""
pass

View File

@@ -0,0 +1,7 @@
#!/usr/bin/env python
# encoding: utf-8
"""
"""

View File

View File

@@ -0,0 +1,21 @@
#!/usr/bin/env python
# encoding: utf-8
def column_values_to_column(pivot_column, value_column, kept_columns, df):
"""Pivot_column's values go to column with value_column under it, keeping kept_columns
:param pivot_column: column name where value will become columns
:param value_column: column name where value will be under pivot_column
:param kept_columns: unchanged columns
:param df: DataFrame to work with
:return: Stack dataframe
"""
if pivot_column in kept_columns:
pivot_columns = kept_columns
else:
pivot_columns = kept_columns + [pivot_column]
return df.set_index(pivot_columns).unstack(pivot_column)[value_column].reset_index()

View File

@@ -0,0 +1,257 @@
#!/usr/bin/env python
# encoding: utf-8
from math import ceil
import pandas as pd
def is_none_score(x, score_config):
"""Is a score correspond to a None numeric_value which
>>> import pandas as pd
>>> d = {"Eleve":["E1"]*7,
... "score_rate": [1]*7,
... "is_leveled":[0]+[1]*6,
... "score":[0.33, "", ".", "a", 1, 2, 3],
... }
>>> score_config = {
... 'BAD': {'value': 0, 'numeric_value': 0},
... 'FEW': {'value': 1, 'numeric_value': 1},
... 'NEARLY': {'value': 2, 'numeric_value': 2},
... 'GOOD': {'value': 3, 'numeric_value': 3},
... 'NOTFILLED': {'value': '', 'numeric_value': 'None'},
... 'NOANSWER': {'value': '.', 'numeric_value': 0},
... 'ABS': {'value': 'a', 'numeric_value': 'None'}
... }
>>> df = pd.DataFrame(d)
>>> df.apply(lambda x:is_none_score(x, score_config), axis=1)
0 False
1 True
2 False
3 True
4 False
5 False
6 False
dtype: bool
"""
none_values = [
v["value"]
for v in score_config.values()
if str(v["numeric_value"]).lower() == "none"
]
return x["score"] in none_values or pd.isnull(x["score"])
def format_score(x, score_config):
"""Make sure that score have the appropriate format
>>> import pandas as pd
>>> d = {"Eleve":["E1"]*6,
... "score_rate": [1]*6,
... "is_leveled":[0]+[1]*5,
... "score":[0.33, ".", "a", 1, 2, 3],
... }
>>> score_config = {
... 'BAD': {'value': 0, 'numeric_value': 0},
... 'FEW': {'value': 1, 'numeric_value': 1},
... 'NEARLY': {'value': 2, 'numeric_value': 2},
... 'GOOD': {'value': 3, 'numeric_value': 3},
... 'NOTFILLED': {'value': '', 'numeric_value': 'None'},
... 'NOANSWER': {'value': '.', 'numeric_value': 0},
... 'ABS': {'value': 'a', 'numeric_value': 'None'}
... }
>>> df = pd.DataFrame(d)
>>> df.apply(lambda x:format_score(x, score_config), axis=1)
0 0.33
1 .
2 a
3 1
4 2
5 3
dtype: object
>>> format_score({"score": "1.0", "is_leveled": 1}, score_config)
1
>>> format_score({"score": "3.0", "is_leveled": 1}, score_config)
3
>>> format_score({"score": 4, "is_leveled": 1}, score_config)
Traceback (most recent call last):
...
ValueError: 4 (<class 'int'>) can't be a score
"""
if not x["is_leveled"]:
return float(x["score"])
try:
score = int(float(x["score"]))
except ValueError:
score = str(x["score"])
if score in [v["value"] for v in score_config.values()]:
return score
raise ValueError(f"{x['score']} ({type(x['score'])}) can't be a score")
def score_to_numeric_score(x, score_config):
"""Convert a score to the corresponding numeric value
>>> import pandas as pd
>>> d = {"Eleve":["E1"]*7,
... "score_rate": [1]*7,
... "is_leveled":[0]+[1]*6,
... "score":[0.33, "", ".", "a", 1, 2, 3],
... }
>>> score_config = {
... 'BAD': {'value': 0, 'numeric_value': 0},
... 'FEW': {'value': 1, 'numeric_value': 1},
... 'NEARLY': {'value': 2, 'numeric_value': 2},
... 'GOOD': {'value': 3, 'numeric_value': 3},
... 'NOTFILLED': {'value': '', 'numeric_value': 'None'},
... 'NOANSWER': {'value': '.', 'numeric_value': 0},
... 'ABS': {'value': 'a', 'numeric_value': 'None'}
... }
>>> df = pd.DataFrame(d)
>>> df.apply(lambda x:score_to_numeric_score(x, score_config), axis=1)
0 0.33
1 None
2 0
3 None
4 1
5 2
6 3
dtype: object
"""
if x["is_leveled"]:
replacements = {v["value"]: v["numeric_value"] for v in score_config.values()}
return replacements[x["score"]]
return x["score"]
def score_to_mark(x, score_max, rounding=lambda x: round(x, 2)):
"""Compute the mark from "score" which have to be filtered and in numeric form
if the item is leveled then the score is multiply by the score_rate
otherwise it copies the score
:param x: dictionnary with "is_leveled", "score" (need to be number) and "score_rate" keys
:param score_max:
:param rounding: rounding mark function
:return: the mark
>>> import pandas as pd
>>> d = {"Eleve":["E1"]*7,
... "score_rate": [1]*7,
... "is_leveled":[0]+[1]*6,
... "score":[0.33, "", ".", "a", 1, 2, 3],
... }
>>> score_config = {
... 'BAD': {'value': 0, 'numeric_value': 0},
... 'FEW': {'value': 1, 'numeric_value': 1},
... 'NEARLY': {'value': 2, 'numeric_value': 2},
... 'GOOD': {'value': 3, 'numeric_value': 3},
... 'NOTFILLED': {'value': '', 'numeric_value': 'None'},
... 'NOANSWER': {'value': '.', 'numeric_value': 0},
... 'ABS': {'value': 'a', 'numeric_value': 'None'}
... }
>>> df = pd.DataFrame(d)
>>> df = df[~df.apply(lambda x:is_none_score(x, score_config), axis=1)]
>>> df["score"] = df.apply(lambda x:score_to_numeric_score(x, score_config), axis=1)
>>> df.apply(lambda x:score_to_mark(x, 3), axis=1)
0 0.33
2 0.00
4 0.33
5 0.67
6 1.00
dtype: float64
>>> from .on_value import round_half_point
>>> df.apply(lambda x:score_to_mark(x, 3, round_half_point), axis=1)
0 0.5
2 0.0
4 0.5
5 0.5
6 1.0
dtype: float64
"""
if x["is_leveled"]:
if x["score"] not in list(range(score_max + 1)):
raise ValueError(f"The evaluation is out of range: {x['score']} at {x}")
return rounding(x["score"] * x["score_rate"] / score_max)
return rounding(x["score"])
def score_to_level(x, level_max=3):
"""Compute the level (".",0,1,2,3).
:param x: dictionnary with "is_leveled", "score" and "score_rate" keys
:return: the level
>>> import pandas as pd
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "score_rate":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "is_leveled":[0]*4+[1]*2 + [0]*4+[1]*2,
... "score":[1, 0.33, 0, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> df
Eleve score_rate is_leveled score
0 E1 1 0 1.000
1 E1 1 0 0.330
2 E1 2 0 0.000
3 E1 2 0 1.500
4 E1 2 1 1.000
5 E1 2 1 3.000
6 E2 1 0 0.666
7 E2 1 0 1.000
8 E2 2 0 1.500
9 E2 2 0 1.000
10 E2 2 1 2.000
11 E2 2 1 3.000
>>> df.apply(score_to_level, axis=1)
0 3
1 1
2 0
3 3
4 1
5 3
6 2
7 3
8 3
9 2
10 2
11 3
dtype: int64
>>> df.apply(lambda x: score_to_level(x, 5), axis=1)
0 5
1 2
2 0
3 4
4 1
5 3
6 4
7 5
8 4
9 3
10 2
11 3
dtype: int64
"""
if x["is_leveled"]:
return int(x["score"])
if x["score"] > x["score_rate"]:
raise ValueError(
f"score is higher than score_rate ({x['score']} > {x['score_rate']}) for {x}"
)
return int(ceil(x["score"] / x["score_rate"] * level_max))
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

View File

@@ -0,0 +1,40 @@
#!/usr/bin/env python
# encoding: utf-8
from math import ceil, floor
def round_with_base(x, base=0.5):
"""Round to a multiple of base
:example:
>>> round_with_base(1.33, 0.1)
1.3
>>> round_with_base(1.33, 0.2)
1.4
>>> round_with_base(1.33, 1)
1
>>> round_with_base(1.33, 2)
2
"""
try:
prec = len(str(base).split(".")[1])
except IndexError:
prec = 0
return round(base * round(float(x) / base), prec)
def round_half_point(x):
"""Round to nearest half point
:example:
>>> round_half_point(1.33)
1.5
>>> round_half_point(1.1)
1.0
>>> round_half_point(1.66)
1.5
>>> round_half_point(1.76)
2.0
"""
return round_with_base(x, base=0.5)

View File

@@ -1,219 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
import pandas as pd
import numpy as np
from math import ceil, floor
from .config import COLUMNS, VALIDSCORE
"""
Functions for manipulate score dataframes
"""
def round_half_point(val):
try:
return 0.5 * ceil(2.0 * val)
except ValueError:
return val
except TypeError:
return val
def score_to_mark(x):
"""Compute the mark
if the item is leveled then the score is multiply by the score_rate
otherwise it copies the score
:param x: dictionnary with COLUMNS["is_leveled"], COLUMNS["score"] and COLUMNS["score_rate"] keys
:return: the mark
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... COLUMNS["score_rate"]:[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... COLUMNS["is_leveled"]:[0]*4+[1]*2 + [0]*4+[1]*2,
... COLUMNS["score"]:[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> score_to_mark(df.loc[0])
1.0
>>> score_to_mark(df.loc[10])
1.3333333333333333
"""
# -1 is no answer
if x[COLUMNS["score"]] == -1:
return 0
if x[COLUMNS["is_leveled"]]:
if x[COLUMNS["score"]] not in [0, 1, 2, 3]:
raise ValueError(
f"The evaluation is out of range: {x[COLUMNS['score']]} at {x}"
)
return round_half_point(x[COLUMNS["score"]] * x[COLUMNS["score_rate"]] / 3)
if x[COLUMNS["score"]] > x[COLUMNS["score_rate"]]:
raise ValueError(
f"The score ({x['score']}) is greated than the rating scale ({x[COLUMNS['score_rate']]}) at {x}"
)
return x[COLUMNS["score"]]
def score_to_level(x):
"""Compute the level (".",0,1,2,3).
:param x: dictionnary with COLUMNS["is_leveled"], COLUMNS["score"] and COLUMNS["score_rate"] keys
:return: the level
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... COLUMNS["score_rate"]:[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... COLUMNS["is_leveled"]:[0]*4+[1]*2 + [0]*4+[1]*2,
... COLUMNS["score"]:[1, 0.33, np.nan, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> score_to_level(df.loc[0])
3
>>> score_to_level(df.loc[1])
1
>>> score_to_level(df.loc[2])
'na'
>>> score_to_level(df.loc[3])
3
>>> score_to_level(df.loc[5])
3
>>> score_to_level(df.loc[10])
2
"""
# negatives are no answer or negatives points
if x[COLUMNS["score"]] <= -1:
return np.nan
if x[COLUMNS["is_leveled"]]:
return int(x[COLUMNS["score"]])
return int(ceil(x[COLUMNS["score"]] / x[COLUMNS["score_rate"]] * 3))
# DataFrame columns manipulations
def compute_mark(df):
"""Compute the mark for the dataframe
apply score_to_mark to each row
:param df: DataFrame with COLUMNS["score"], COLUMNS["is_leveled"] and COLUMNS["score_rate"] columns.
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... COLUMNS["score_rate"]:[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... COLUMNS["is_leveled"]:[0]*4+[1]*2 + [0]*4+[1]*2,
... COLUMNS["score"]:[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> compute_mark(df)
0 1.00
1 0.33
2 2.00
3 1.50
4 0.67
5 2.00
6 0.67
7 1.00
8 1.50
9 1.00
10 1.33
11 2.00
dtype: float64
"""
return df[[COLUMNS["score"], COLUMNS["is_leveled"], COLUMNS["score_rate"]]].apply(
score_to_mark, axis=1
)
def compute_level(df):
"""Compute level for the dataframe
Applies score_to_level to each row
:param df: DataFrame with COLUMNS["score"], COLUMNS["is_leveled"] and COLUMNS["score_rate"] columns.
:return: Columns with level
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... COLUMNS["score_rate"]:[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... COLUMNS["is_leveled"]:[0]*4+[1]*2 + [0]*4+[1]*2,
... COLUMNS["score"]:[np.nan, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> compute_level(df)
0 na
1 1
2 3
3 3
4 1
5 3
6 2
7 3
8 3
9 2
10 2
11 3
dtype: object
"""
return df[[COLUMNS["score"], COLUMNS["is_leveled"], COLUMNS["score_rate"]]].apply(
score_to_level, axis=1
)
def compute_normalized(df):
"""Compute the normalized mark (Mark / score_rate)
:param df: DataFrame with "Mark" and COLUMNS["score_rate"] columns
:return: column with normalized mark
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... COLUMNS["score_rate"]:[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... COLUMNS["is_leveled"]:[0]*4+[1]*2 + [0]*4+[1]*2,
... COLUMNS["score"]:[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> df["Mark"] = compute_marks(df)
>>> compute_normalized(df)
0 1.00
1 0.33
2 1.00
3 0.75
4 0.33
5 1.00
6 0.67
7 1.00
8 0.75
9 0.50
10 0.67
11 1.00
dtype: float64
"""
return df[COLUMNS["mark"]] / df[COLUMNS["score_rate"]]
# Postprocessing question scores
def pp_q_scores(df):
"""Postprocessing questions scores dataframe
Add 3 columns: mark, level and normalized
:param df: questions-scores dataframe
:return: same data frame with mark, level and normalize columns
"""
assign = {
COLUMNS["mark"]: compute_mark,
COLUMNS["level"]: compute_level,
COLUMNS["normalized"]: compute_normalized,
}
return df.assign(**assign)
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

View File

@@ -1,132 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
from datetime import datetime
from pathlib import Path
from prompt_toolkit import HTML
import yaml
from .getconfig import config
class Exam:
def __init__(self, name, tribename, date, term, **kwrds):
self._name = name
self._tribename = tribename
try:
self._date = datetime.strptime(date, "%y%m%d")
except:
self._date = date
self._term = term
self._exercises = {}
@property
def name(self):
return self._name
@property
def tribename(self):
return self._tribename
@property
def date(self):
return self._date
@property
def term(self):
return self._term
def add_exercise(self, name, questions):
""" Add key with questions in ._exercises """
try:
self._exercises[name]
except KeyError:
self._exercises[name] = questions
else:
raise KeyError("The exercise already exsists. Use modify_exercise")
def modify_exercise(self, name, questions, append=False):
"""Modify questions of an exercise
If append==True, add questions to the exercise questions
"""
try:
self._exercises[name]
except KeyError:
raise KeyError("The exercise already exsists. Use modify_exercise")
else:
if append:
self._exercises[name] += questions
else:
self._exercises[name] = questions
@property
def exercices(self):
return self._exercises
@property
def tribe_path(self):
return Path(config["source"]) / self.tribename
@property
def tribe_student_path(self):
return (
Path(config["source"])
/ [t["students"] for t in config["tribes"] if t["name"] == self.tribename][
0
]
)
@property
def long_name(self):
""" Get exam name with date inside """
return f"{self.date.strftime('%y%m%d')}_{self.name}"
def path(self, extention=""):
return self.tribe_path / (self.long_name + extention)
def to_dict(self):
return {
"name": self.name,
"tribename": self.tribename,
"date": self.date,
"term": self.term,
"exercices": self.exercices,
}
def to_row(self):
rows = []
for ex, questions in self.exercices.items():
for q in questions:
rows.append(
{
"term": self.term,
"assessment": self.name,
"date": self.date.strftime("%d/%m/%Y"),
"exercise": ex,
"question": q["id"],
**q,
}
)
return rows
@property
def themes(self):
themes = set()
for questions in self._exercises.values():
themes.update([q["theme"] for q in questions])
return themes
def display_exercise(self, name):
pass
def display(self, name):
pass
def write(self):
print(f"Sauvegarde temporaire dans {self.path('.yml')}")
self.tribe_path.mkdir(exist_ok=True)
with open(self.path(".yml"), "w") as f:
f.write(yaml.dump(self.to_dict()))

View File

@@ -1,9 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
import yaml
CONFIGPATH = "recoconfig.yml"
with open(CONFIGPATH, "r") as config:
config = yaml.load(config, Loader=yaml.FullLoader)

View File

@@ -1,233 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
from prompt_toolkit import prompt, HTML, ANSI
from prompt_toolkit import print_formatted_text as print
from prompt_toolkit.styles import Style
from prompt_toolkit.validation import Validator
from prompt_toolkit.completion import WordCompleter
from unidecode import unidecode
from datetime import datetime
from functools import wraps
import sys
from .getconfig import config
VALIDATE = [
"o",
"ok",
"OK",
"oui",
"OUI",
"yes",
"YES",
]
REFUSE = ["n", "non", "NON", "no", "NO"]
CANCEL = ["a", "annuler"]
STYLE = Style.from_dict(
{
"": "#93A1A1",
"validation": "#884444",
"appending": "#448844",
}
)
class CancelError(Exception):
pass
def prompt_validate(question, cancelable=False, empty_means=1, style="validation"):
"""Prompt for validation
:param question: Text to print to ask the question.
:param cancelable: enable cancel answer
:param empty_means: result for no answer
:return:
0 -> Refuse
1 -> Validate
-1 -> cancel
"""
question_ = question
choices = VALIDATE + REFUSE
if cancelable:
question_ += "(a ou annuler pour sortir)"
choices += CANCEL
ans = prompt(
[
(f"class:{style}", question_),
],
completer=WordCompleter(choices),
style=STYLE,
).lower()
if ans == "":
return empty_means
if ans in VALIDATE:
return 1
if cancelable and ans in CANCEL:
return -1
return 0
def prompt_until_validate(question="C'est ok? ", cancelable=False):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwrd):
ans = func(*args, **kwrd)
confirm = prompt_validate(question, cancelable)
if confirm == -1:
raise CancelError
while not confirm:
sys.stdout.flush()
ans = func(*args, **ans, **kwrd)
confirm = prompt_validate(question, cancelable)
if confirm == -1:
raise CancelError
return ans
return wrapper
return decorator
@prompt_until_validate()
def prompt_exam(**kwrd):
""" Prompt questions to edit an exam """
print(HTML("<b>Nouvelle évaluation</b>"))
exam = {}
exam["name"] = prompt("Nom de l'évaluation: ", default=kwrd.get("name", "DS"))
tribes_name = [t["name"] for t in config["tribes"]]
exam["tribename"] = prompt(
"Nom de la classe: ",
default=kwrd.get("tribename", ""),
completer=WordCompleter(tribes_name),
validator=Validator.from_callable(lambda x: x in tribes_name),
)
exam["tribe"] = [t for t in config["tribes"] if t["name"] == exam["tribename"]][0]
exam["date"] = prompt(
"Date de l'évaluation (%y%m%d): ",
default=kwrd.get("date", datetime.today()).strftime("%y%m%d"),
validator=Validator.from_callable(lambda x: (len(x) == 6) and x.isdigit()),
)
exam["date"] = datetime.strptime(exam["date"], "%y%m%d")
exam["term"] = prompt(
"Trimestre: ",
validator=Validator.from_callable(lambda x: x.isdigit()),
default=kwrd.get("term", "1"),
)
return exam
@prompt_until_validate()
def prompt_exercise(number=1, completer={}, **kwrd):
exercise = {}
try:
kwrd["name"]
except KeyError:
print(HTML("<b>Nouvel exercice</b>"))
exercise["name"] = prompt(
"Nom de l'exercice: ", default=kwrd.get("name", f"Exercice {number}")
)
else:
print(HTML(f"<b>Modification de l'exercice: {kwrd['name']}</b>"))
exercise["name"] = kwrd["name"]
exercise["questions"] = []
try:
kwrd["questions"][0]
except KeyError:
last_question_id = "1a"
except IndexError:
last_question_id = "1a"
else:
for ques in kwrd["questions"]:
try:
exercise["questions"].append(
prompt_question(completer=completer, **ques)
)
except CancelError:
print("Cette question a été supprimée")
last_question_id = exercise["questions"][-1]["id"]
appending = prompt_validate(
question="Ajouter un élément de notation? ", style="appending"
)
while appending:
try:
exercise["questions"].append(
prompt_question(last_question_id, completer=completer)
)
except CancelError:
print("Cette question a été supprimée")
else:
last_question_id = exercise["questions"][-1]["id"]
appending = prompt_validate(
question="Ajouter un élément de notation? ", style="appending"
)
return exercise
@prompt_until_validate(cancelable=True)
def prompt_question(last_question_id="1a", completer={}, **kwrd):
try:
kwrd["id"]
except KeyError:
print(HTML("<b>Nouvel élément de notation</b>"))
else:
print(
HTML(f"<b>Modification de l'élément {kwrd['id']} ({kwrd['comment']})</b>")
)
question = {}
question["id"] = prompt(
"Identifiant de la question: ",
default=kwrd.get("id", "1a"),
)
question["competence"] = prompt(
"Competence: ",
default=kwrd.get("competence", list(config["competences"].keys())[0]),
completer=WordCompleter(config["competences"].keys()),
validator=Validator.from_callable(lambda x: x in config["competences"].keys()),
)
question["theme"] = prompt(
"Domaine: ",
default=kwrd.get("theme", ""),
completer=WordCompleter(completer.get("theme", [])),
)
question["comment"] = prompt(
"Commentaire: ",
default=kwrd.get("comment", ""),
)
question["is_leveled"] = prompt(
"Évaluation par niveau: ",
default=kwrd.get("is_leveled", "1"),
# validate
)
question["score_rate"] = prompt(
"Barème: ",
default=kwrd.get("score_rate", "1"),
# validate
)
return question

View File

@@ -2,19 +2,7 @@
# encoding: utf-8
import click
from pathlib import Path
import sys
import papermill as pm
import pandas as pd
from datetime import datetime
import yaml
from .getconfig import config, CONFIGPATH
from .prompts import prompt_exam, prompt_exercise, prompt_validate
from ..config import NO_ST_COLUMNS
from .exam import Exam
from ..dashboard.exam import app as exam_app
from recopytex.dashboard.index import app as dash
@click.group()
def cli():
@@ -22,112 +10,9 @@ def cli():
@cli.command()
def print_config():
click.echo(f"Config file is {CONFIGPATH}")
click.echo("It contains")
click.echo(config)
@click.option("--debug", default=0, help="Debug mode for dash")
def dashboard(debug):
dash.run_server(debug=bool(debug))
@cli.command()
def setup():
"""Setup the environnement using recoconfig.yml"""
for tribe in config["tribes"]:
Path(tribe["name"]).mkdir(exist_ok=True)
if not Path(tribe["students"]).exists():
print(f"The file {tribe['students']} does not exists")
@cli.command()
def new_exam():
""" Create new exam csv file """
exam = Exam(**prompt_exam())
if exam.path(".yml").exists():
print(f"Fichier sauvegarde trouvé à {exam.path('.yml')} -- importation")
with open(exam.path(".yml"), "r") as f:
for name, questions in yaml.load(f, Loader=yaml.SafeLoader)[
"exercices"
].items():
exam.add_exercise(name, questions)
print(exam.themes)
# print(yaml.dump(exam.to_dict()))
exam.write()
for name, questions in exam.exercices.items():
exam.modify_exercise(
**prompt_exercise(
name=name, completer={"theme": exam.themes}, questions=questions
)
)
exam.write()
new_exercise = prompt_validate("Ajouter un exercice? ")
while new_exercise:
exam.add_exercise(
**prompt_exercise(len(exam.exercices) + 1, completer={"theme": exam.themes})
)
exam.write()
new_exercise = prompt_validate("Ajouter un exercice? ")
rows = exam.to_row()
base_df = pd.DataFrame.from_dict(rows)[NO_ST_COLUMNS.keys()]
base_df.rename(columns=NO_ST_COLUMNS, inplace=True)
students = pd.read_csv(exam.tribe_student_path)["Nom"]
for student in students:
base_df[student] = ""
exam.tribe_path.mkdir(exist_ok=True)
base_df.to_csv(exam.path(".csv"), index=False)
print(f"Le fichier note a été enregistré à {exam.path('.csv')}")
@cli.command()
def exam_analysis():
exam_app.run_server(debug=True)
@cli.command()
@click.argument("csv_file")
def report(csv_file):
csv = Path(csv_file)
if not csv.exists():
click.echo(f"{csv_file} does not exists")
sys.exit(1)
if csv.suffix != ".csv":
click.echo(f"{csv_file} has to be a csv file")
sys.exit(1)
csv_file = Path(csv_file)
tribe_dir = csv_file.parent
csv_filename = csv_file.name.split(".")[0]
assessment = str(csv_filename).split("_")[-1].capitalize()
date = str(csv_filename).split("_")[0]
try:
date = datetime.strptime(date, "%y%m%d")
except ValueError:
date = None
tribe = str(tribe_dir).split("/")[-1]
template = Path(config["templates"]) / "tpl_evaluation.ipynb"
dest = Path(config["output"]) / tribe / csv_filename
dest.mkdir(parents=True, exist_ok=True)
click.echo(f"Building {assessment} ({date:%d/%m/%y}) report")
pm.execute_notebook(
str(template),
str(dest / f"{assessment}.ipynb"),
parameters=dict(
tribe=tribe,
assessment=assessment,
date=f"{date:%d/%m/%y}",
csv_file=str(csv_file.absolute()),
),
)
if __name__ == "__main__":
cli()

13
test_config.yml Normal file
View File

@@ -0,0 +1,13 @@
---
source: ./example
output: ./output
templates: templates/
tribes:
Tribe1:
name: Tribe1
type: Type1
students: tribe1.csv
Tribe2:
name: Tribe2
students: tribe2.csv