Compare commits

20 Commits

Author SHA1 Message Date
6eb918e0f5 Feat: can read exam config from yaml 2021-01-06 09:09:35 +01:00
56a669b2be Feat: remove exQty in prompt 2021-01-06 08:53:06 +01:00
a5f22fc8cd Fix: commentaire -> comment 2021-01-06 07:59:42 +01:00
5177df06d7 Fix: element -> row 2021-01-05 09:15:41 +01:00
d78fcbc281 Feat: add competences 2021-01-05 09:15:24 +01:00
98fa768541 format: black formating 2021-01-05 09:14:52 +01:00
00c2681823 Fix: element -> row 2021-01-05 09:14:37 +01:00
52f2f3f4cf Feat: incoporate cometences config 2021-01-01 18:04:28 +01:00
4ea7f8db14 Feat: replace references to PyInquier with prompt_toolkit 2021-01-01 17:47:13 +01:00
04a2506d86 Feat: rewrite new_exam prompt without Pyinquier 2020-12-31 18:00:42 +01:00
77c358b0c1 Feat: écriture du fichier csv 2020-10-04 18:49:44 +02:00
1886deb430 Feat: question prompts 2020-10-04 18:10:43 +02:00
5e0f2d92ef Feat: prompt for exercises 2020-10-04 16:38:36 +02:00
49cc52f7d1 Feat: prompts and write prompt_exam 2020-10-04 16:11:55 +02:00
6d93ef62d7 Feat: split requirements 2020-10-04 16:11:41 +02:00
488df4cb0c Feat: start example folder 2020-10-04 15:07:11 +02:00
9136f359e0 Feat: add .vim in gitignore 2020-10-04 07:30:21 +02:00
1dfee17990 Doc: des explications 2020-10-04 07:29:37 +02:00
400fb0a690 FEat: add comments 2020-10-04 07:20:08 +02:00
04a1ed9378 Feat: remove versions in requirements 2020-10-04 07:09:18 +02:00
12 changed files with 527 additions and 103 deletions

4
.gitignore vendored
View File

@@ -122,3 +122,7 @@ dmypy.json
# Pyre type checker
.pyre/
# vim
.vim

View File

@@ -6,3 +6,29 @@ Cette fois ci, on utilise:
- Des fichiers yaml pour les infos sur les élèves
- Des notebooks pour l'analyse
- Papermill pour produire les notesbooks à partir de template
## Les fichiers CSV
les paramètres sont décris dans ./recopytex/config.py
### Descriptions des questions
- Trimestre
- Nom
- Date
- Exercice
- Question
- Competence
- Domaine
- Commentaire
- Bareme
- Est_nivele
### Valeurs pour notes les élèves
- Score: 0, 1, 2, 3
- Pas de réponses: .
- Absent: a
- Dispensé: (vide)

32
example/recoconfig.yml Normal file
View File

@@ -0,0 +1,32 @@
---
source: ./
output: ./
templates: templates/
competences:
Calculer:
name: Calculer
abrv: Cal
Représenter:
name: Représenter
abrv: Rep
Modéliser:
name: Modéliser
abrv: Mod
Raisonner:
name: Raisonner
abrv: Rai
Calculer:
name: Calculer
abrv: Cal
Communiquer:
name: Communiquer
abrv: Com
tribes:
- name: Tribe1
type: Type1
students: tribe1.csv
- name: Tribe2
students: tribe2.csv

21
example/tribe1.csv Normal file
View File

@@ -0,0 +1,21 @@
Nom,email
Star Tice,stice0@jalbum.net
Umberto Dingate,udingate1@tumblr.com
Starlin Crangle,scrangle2@wufoo.com
Humbert Bourcq,hbourcq3@g.co
Gabriella Handyside,ghandyside4@patch.com
Stewart Eaves,seaves5@ycombinator.com
Erick Going,egoing6@va.gov
Ase Praton,apraton7@va.gov
Rollins Planks,rplanks8@delicious.com
Dunstan Sarjant,dsarjant9@naver.com
Stacy Guiton,sguitona@themeforest.net
Ange Stanes,astanesb@marriott.com
Amabelle Elleton,aelletonc@squidoo.com
Darn Broomhall,dbroomhalld@cisco.com
Dyan Chatto,dchattoe@npr.org
Keane Rennebach,krennebachf@dot.gov
Nari Paulton,npaultong@gov.uk
Brandy Wase,bwaseh@ftc.gov
Jaclyn Firidolfi,jfiridolfii@reuters.com
Violette Lockney,vlockneyj@chron.com
1 Nom email
2 Star Tice stice0@jalbum.net
3 Umberto Dingate udingate1@tumblr.com
4 Starlin Crangle scrangle2@wufoo.com
5 Humbert Bourcq hbourcq3@g.co
6 Gabriella Handyside ghandyside4@patch.com
7 Stewart Eaves seaves5@ycombinator.com
8 Erick Going egoing6@va.gov
9 Ase Praton apraton7@va.gov
10 Rollins Planks rplanks8@delicious.com
11 Dunstan Sarjant dsarjant9@naver.com
12 Stacy Guiton sguitona@themeforest.net
13 Ange Stanes astanesb@marriott.com
14 Amabelle Elleton aelletonc@squidoo.com
15 Darn Broomhall dbroomhalld@cisco.com
16 Dyan Chatto dchattoe@npr.org
17 Keane Rennebach krennebachf@dot.gov
18 Nari Paulton npaultong@gov.uk
19 Brandy Wase bwaseh@ftc.gov
20 Jaclyn Firidolfi jfiridolfii@reuters.com
21 Violette Lockney vlockneyj@chron.com

21
example/tribe2.csv Normal file
View File

@@ -0,0 +1,21 @@
Nom,email
Elle McKintosh,emckintosh0@1und1.de
Ty Megany,tmegany1@reuters.com
Pippa Borrows,pborrows2@a8.net
Sonny Eskrick,seskrick3@123-reg.co.uk
Mollee Britch,mbritch4@usda.gov
Ingram Plaistowe,iplaistowe5@purevolume.com
Fay Vanyard,fvanyard6@sbwire.com
Nancy Rase,nrase7@omniture.com
Rachael Ruxton,rruxton8@bravesites.com
Tallie Rushmer,trushmer9@home.pl
Seward MacIlhagga,smacilhaggaa@hatena.ne.jp
Lizette Searl,lsearlb@list-manage.com
Talya Mannagh,tmannaghc@webnode.com
Jordan Witherbed,jwitherbedd@unesco.org
Reagan Botcherby,rbotcherbye@scientificamerican.com
Libbie Shoulder,lshoulderf@desdev.cn
Abner Khomich,akhomichg@youtube.com
Zollie Kitman,zkitmanh@forbes.com
Fiorenze Durden,fdurdeni@feedburner.com
Kevyn Race,kracej@seattletimes.com
1 Nom email
2 Elle McKintosh emckintosh0@1und1.de
3 Ty Megany tmegany1@reuters.com
4 Pippa Borrows pborrows2@a8.net
5 Sonny Eskrick seskrick3@123-reg.co.uk
6 Mollee Britch mbritch4@usda.gov
7 Ingram Plaistowe iplaistowe5@purevolume.com
8 Fay Vanyard fvanyard6@sbwire.com
9 Nancy Rase nrase7@omniture.com
10 Rachael Ruxton rruxton8@bravesites.com
11 Tallie Rushmer trushmer9@home.pl
12 Seward MacIlhagga smacilhaggaa@hatena.ne.jp
13 Lizette Searl lsearlb@list-manage.com
14 Talya Mannagh tmannaghc@webnode.com
15 Jordan Witherbed jwitherbedd@unesco.org
16 Reagan Botcherby rbotcherbye@scientificamerican.com
17 Libbie Shoulder lshoulderf@desdev.cn
18 Abner Khomich akhomichg@youtube.com
19 Zollie Kitman zkitmanh@forbes.com
20 Fiorenze Durden fdurdeni@feedburner.com
21 Kevyn Race kracej@seattletimes.com

View File

@@ -17,7 +17,7 @@ def try_replace(x, old, new):
def extract_students(df, no_student_columns=NO_ST_COLUMNS.values()):
""" Extract the list of students from df
"""Extract the list of students from df
:param df: the dataframe
:param no_student_columns: columns that are not students
@@ -30,7 +30,7 @@ def extract_students(df, no_student_columns=NO_ST_COLUMNS.values()):
def flat_df_students(
df, no_student_columns=NO_ST_COLUMNS.values(), postprocessing=True
):
""" Flat the dataframe by returning a dataframe with on student on each line
"""Flat the dataframe by returning a dataframe with on student on each line
:param df: the dataframe (one row per questions)
:param no_student_columns: columns that are not students
@@ -63,7 +63,7 @@ def flat_df_students(
def flat_df_for(
df, student, no_student_columns=NO_ST_COLUMNS.values(), postprocessing=True
):
""" Extract the data only for one student
"""Extract the data only for one student
:param df: the dataframe (one row per questions)
:param no_student_columns: columns that are not students
@@ -88,7 +88,7 @@ def flat_df_for(
def postprocess(df):
""" Postprocessing score dataframe
"""Postprocessing score dataframe
- Replace na with an empty string
- Replace "NOANSWER" with -1

View File

@@ -6,7 +6,9 @@ import numpy as np
from math import ceil, floor
from .config import COLUMNS, VALIDSCORE
# Values manipulations
"""
Functions for manipulate score dataframes
"""
def round_half_point(val):
@@ -19,12 +21,13 @@ def round_half_point(val):
def score_to_mark(x):
""" Compute the mark
"""Compute the mark
if the item is leveled then the score is multiply by the score_rate
otherwise it copies the score
:param x: dictionnary with COLUMNS["is_leveled"], COLUMNS["score"] and COLUMNS["score_rate"] keys
:return: the mark
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... COLUMNS["score_rate"]:[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
@@ -43,7 +46,9 @@ def score_to_mark(x):
if x[COLUMNS["is_leveled"]]:
if x[COLUMNS["score"]] not in [0, 1, 2, 3]:
raise ValueError(f"The evaluation is out of range: {x[COLUMNS['score']]} at {x}")
raise ValueError(
f"The evaluation is out of range: {x[COLUMNS['score']]} at {x}"
)
return round_half_point(x[COLUMNS["score"]] * x[COLUMNS["score_rate"]] / 3)
if x[COLUMNS["score"]] > x[COLUMNS["score_rate"]]:
@@ -54,9 +59,10 @@ def score_to_mark(x):
def score_to_level(x):
""" Compute the level (".",0,1,2,3).
"""Compute the level (".",0,1,2,3).
:param x: dictionnary with COLUMNS["is_leveled"], COLUMNS["score"] and COLUMNS["score_rate"] keys
:return: the level
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... COLUMNS["score_rate"]:[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
@@ -91,7 +97,9 @@ def score_to_level(x):
def compute_mark(df):
""" Add Mark column to df
"""Compute the mark for the dataframe
apply score_to_mark to each row
:param df: DataFrame with COLUMNS["score"], COLUMNS["is_leveled"] and COLUMNS["score_rate"] columns.
@@ -122,9 +130,12 @@ def compute_mark(df):
def compute_level(df):
""" Add Mark column to df
"""Compute level for the dataframe
Applies score_to_level to each row
:param df: DataFrame with COLUMNS["score"], COLUMNS["is_leveled"] and COLUMNS["score_rate"] columns.
:return: Columns with level
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... COLUMNS["score_rate"]:[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
@@ -153,9 +164,10 @@ def compute_level(df):
def compute_normalized(df):
""" Compute the normalized mark (Mark / score_rate)
"""Compute the normalized mark (Mark / score_rate)
:param df: DataFrame with "Mark" and COLUMNS["score_rate"] columns
:return: column with normalized mark
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... COLUMNS["score_rate"]:[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
@@ -186,7 +198,9 @@ def compute_normalized(df):
def pp_q_scores(df):
""" Postprocessing questions scores dataframe
"""Postprocessing questions scores dataframe
Add 3 columns: mark, level and normalized
:param df: questions-scores dataframe
:return: same data frame with mark, level and normalize columns

View File

@@ -0,0 +1,9 @@
#!/usr/bin/env python
# encoding: utf-8
import yaml
CONFIGPATH = "recoconfig.yml"
with open(CONFIGPATH, "r") as config:
config = yaml.load(config, Loader=yaml.FullLoader)

View File

@@ -0,0 +1,231 @@
#!/usr/bin/env python
# encoding: utf-8
from prompt_toolkit import prompt, HTML, ANSI
from prompt_toolkit import print_formatted_text as print
from prompt_toolkit.styles import Style
from prompt_toolkit.validation import Validator
from prompt_toolkit.completion import WordCompleter
from unidecode import unidecode
from datetime import datetime
from functools import wraps
import sys
from .getconfig import config
VALIDATE = [
"o",
"ok",
"OK",
"oui",
"OUI",
"yes",
"YES",
]
REFUSE = ["n", "non", "NON", "no", "NO"]
CANCEL = ["a", "annuler"]
STYLE = Style.from_dict(
{
"": "#93A1A1",
"validation": "#884444",
"appending": "#448844",
}
)
class CancelError(Exception):
pass
def prompt_validate(question, cancelable=False, empty_means=1, style="validation"):
"""Prompt for validation
:param question: Text to print to ask the question.
:param cancelable: enable cancel answer
:param empty_means: result for no answer
:return:
0 -> Refuse
1 -> Validate
-1 -> cancel
"""
question_ = question
choices = VALIDATE + REFUSE
if cancelable:
question_ += "(a ou annuler pour sortir)"
choices += CANCEL
ans = prompt(
[
(f"class:{style}", question_),
],
completer=WordCompleter(choices),
style=STYLE,
).lower()
if ans == "":
return empty_means
if ans in VALIDATE:
return 1
if cancelable and ans in CANCEL:
return -1
return 0
def prompt_until_validate(question="C'est ok? ", cancelable=False):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwrd):
ans = func(*args, **kwrd)
confirm = prompt_validate(question, cancelable)
if confirm == -1:
raise CancelError
while not confirm:
sys.stdout.flush()
ans = func(*args, **ans, **kwrd)
confirm = prompt_validate(question, cancelable)
if confirm == -1:
raise CancelError
return ans
return wrapper
return decorator
@prompt_until_validate()
def prompt_exam(**kwrd):
""" Prompt questions to edit an exam """
print(HTML("<b>Nouvelle évaluation</b>"))
exam = {}
exam["name"] = prompt("Nom de l'évaluation: ", default=kwrd.get("name", "DS"))
tribes_name = [t["name"] for t in config["tribes"]]
exam["tribename"] = prompt(
"Nom de la classe: ",
default=kwrd.get("tribename", ""),
completer=WordCompleter(tribes_name),
validator=Validator.from_callable(lambda x: x in tribes_name),
)
exam["tribe"] = [t for t in config["tribes"] if t["name"] == exam["tribename"]][0]
exam["date"] = prompt(
"Date de l'évaluation (%y%m%d): ",
default=kwrd.get("date", datetime.today()).strftime("%y%m%d"),
validator=Validator.from_callable(lambda x: (len(x) == 6) and x.isdigit()),
)
exam["date"] = datetime.strptime(exam["date"], "%y%m%d")
exam["term"] = prompt(
"Trimestre: ",
validator=Validator.from_callable(lambda x: x.isdigit()),
default=kwrd.get("term", "1"),
)
return exam
@prompt_until_validate()
def prompt_exercise(number=1, **kwrd):
try:
kwrd["name"]
except KeyError:
print(HTML("<b>Nouvel exercice</b>"))
else:
print(HTML(f"<b>Modification de l'exercice: {kwrd['name']}</b>"))
exercise = {}
exercise["name"] = prompt(
"Nom de l'exercice: ", default=kwrd.get("name", f"Exercice {number}")
)
exercise["questions"] = []
try:
kwrd["questions"][0]
except KeyError:
last_question_id = "1a"
except IndexError:
last_question_id = "1a"
else:
for ques in kwrd["questions"]:
try:
exercise["questions"].append(prompt_question(**ques))
except CancelError:
print("Cette question a été supprimée")
last_question_id = exercise["questions"][-1]["id"]
appending = prompt_validate(
question="Ajouter un élément de notation? ", style="appending"
)
while appending:
try:
exercise["questions"].append(prompt_question(last_question_id))
except CancelError:
print("Cette question a été supprimée")
else:
last_question_id = exercise["questions"][-1]["id"]
appending = prompt_validate(
question="Ajouter un élément de notation? ", style="appending"
)
return exercise
@prompt_until_validate(cancelable=True)
def prompt_question(last_question_id="1a", **kwrd):
try:
kwrd["id"]
except KeyError:
print(HTML("<b>Nouvel élément de notation</b>"))
else:
print(
HTML(
f"<b>Modification de l'élément {kwrd['id']} ({kwrd['comment']})</b>"
)
)
question = {}
question["id"] = prompt(
"Identifiant de la question: ",
default=kwrd.get("id", "1a"),
)
question["competence"] = prompt(
"Competence: ",
default=kwrd.get("competence", list(config["competences"].keys())[0]),
completer=WordCompleter(config["competences"].keys()),
validator=Validator.from_callable(lambda x: x in config["competences"].keys()),
)
question["theme"] = prompt(
"Domaine: ",
default=kwrd.get("theme", ""),
# completer
)
question["comment"] = prompt(
"Commentaire: ",
default=kwrd.get("comment", ""),
)
question["is_leveled"] = prompt(
"Évaluation par niveau: ",
default=kwrd.get("is_leveled", "1"),
# validate
)
question["score_rate"] = prompt(
"Barème: ",
default=kwrd.get("score_rate", "1"),
# validate
)
return question

View File

@@ -3,15 +3,15 @@
import click
from pathlib import Path
import yaml
import sys
import papermill as pm
import pandas as pd
from datetime import datetime
import yaml
CONFIGPATH = "recoconfig.yml"
with open(CONFIGPATH, "r") as config:
config = yaml.load(config, Loader=yaml.FullLoader)
from .getconfig import config, CONFIGPATH
from .prompts import prompt_exam, prompt_exercise, prompt_validate
from ..config import NO_ST_COLUMNS
@click.group()
@@ -26,6 +26,81 @@ def print_config():
click.echo(config)
@cli.command()
def setup():
"""Setup the environnement using recoconfig.yml"""
for tribe in config["tribes"]:
Path(tribe["name"]).mkdir(exist_ok=True)
if not Path(tribe["students"]).exists():
print(f"The file {tribe['students']} does not exists")
def exam_dict2row(exam):
""" Transform an exam in dictionnary for into list of rows to evaluate"""
rows = []
for ex in exam["exercices"]:
for q in ex["questions"]:
rows.append(
{
"term": exam["term"],
"assessment": exam["name"],
"date": exam["date"].strftime("%d/%m/%Y"),
"exercise": ex["name"],
"question": q["id"],
**q,
}
)
return rows
def get_exam_name(exam):
""" Get exam name from exam data """
return f"{exam['date'].strftime('%y%m%d')}_{exam['name']}"
def get_tribe_path(exam):
""" Get tribe path from exam data """
return Path(config["source"]) / exam["tribe"]["name"]
def get_exam_path(exam, extention=""):
return get_tribe_path(exam)/ (get_exam_name(exam) + extention)
@cli.command()
def new_exam():
""" Create new exam csv file """
exam = prompt_exam()
if get_exam_path(exam, ".yml").exists():
with open(get_exam_path(exam, ".yml"), "r") as f:
exam["exercices"] = yaml.load(f, Loader=yaml.SafeLoader)["exercices"]
else:
exam["exercices"] = []
for i, ex in enumerate(exam["exercices"]):
exam["exercices"][i] = prompt_exercise(**ex)
new_exercise = prompt_validate("Ajouter un exercice? ")
while new_exercise:
exam["exercices"].append(prompt_exercise(len(exam["exercices"])+1))
new_exercise = prompt_validate("Ajouter un exercice? ")
rows = exam_dict2row(exam)
base_df = pd.DataFrame.from_dict(rows)[NO_ST_COLUMNS.keys()]
base_df.rename(columns=NO_ST_COLUMNS, inplace=True)
students = pd.read_csv(exam["tribe"]["students"])["Nom"]
for student in students:
base_df[student] = ""
path = Path(config["source"]) / exam["tribe"]["name"]
path.mkdir(exist_ok=True)
dest = path / get_exam_name(exam) + ".csv"
base_df.to_csv(dest, index=False)
print(f"Le fichier note a été enregistré à {dest}")
@cli.command()
@click.argument("csv_file")
def report(csv_file):
@@ -60,22 +135,9 @@ def report(csv_file):
str(template),
str(dest / f"{assessment}.ipynb"),
parameters=dict(
tribe=tribe, assessment=assessment, date=f"{date:%d/%m/%y}", csv_file=str(csv_file.absolute())
tribe=tribe,
assessment=assessment,
date=f"{date:%d/%m/%y}",
csv_file=str(csv_file.absolute()),
),
)
# with open(csv_file.parent / "description.yml") as f:
# tribe_desc = yaml.load(f, Loader=yaml.FullLoader)
# template = Path(config["templates"]) / "tpl_student.ipynb"
# dest = Path(config["output"]) / tribe / csv_filename / "students"
# dest.mkdir(parents=True, exist_ok=True)
# for st in tribe_desc["students"]:
# click.echo(f"Building {st} report on {assessment}")
# pm.execute_notebook(
# str(template),
# str(dest / f"{st}.ipynb"),
# parameters=dict(tribe=tribe, student=st, source=str(tribe_dir.absolute())),
# )

View File

@@ -1,69 +1,4 @@
ansiwrap==0.8.4
attrs==19.1.0
backcall==0.1.0
bleach==3.1.0
certifi==2019.6.16
chardet==3.0.4
Click==7.0
colorama==0.4.1
cycler==0.10.0
decorator==4.4.0
defusedxml==0.6.0
entrypoints==0.3
future==0.17.1
idna==2.8
importlib-resources==1.0.2
ipykernel==5.1.1
ipython==7.7.0
ipython-genutils==0.2.0
ipywidgets==7.5.1
jedi==0.14.1
Jinja2==2.10.1
jsonschema==3.0.2
jupyter==1.0.0
jupyter-client==5.3.1
jupyter-console==6.0.0
jupyter-core==4.5.0
jupytex==0.0.3
kiwisolver==1.1.0
MarkupSafe==1.1.1
matplotlib==3.1.1
mistune==0.8.4
nbconvert==5.5.0
nbformat==4.4.0
notebook==6.0.0
numpy==1.17.0
pandas==0.25.0
pandocfilters==1.4.2
papermill==1.0.1
parso==0.5.1
pexpect==4.7.0
pickleshare==0.7.5
prometheus-client==0.7.1
prompt-toolkit==2.0.9
ptyprocess==0.6.0
Pygments==2.4.2
pyparsing==2.4.2
pyrsistent==0.15.4
python-dateutil==2.8.0
pytz==2019.2
PyYAML==5.1.2
pyzmq==18.0.2
qtconsole==4.5.2
-e git+git_opytex:/lafrite/recopytex.git@e9a8310f151ead60434ae944d726a2fd22b23d06#egg=Recopytex
requests==2.22.0
scipy==1.3.0
seaborn==0.9.0
Send2Trash==1.5.0
six==1.12.0
tenacity==5.0.4
terminado==0.8.2
testpath==0.4.2
textwrap3==0.9.2
tornado==6.0.3
tqdm==4.32.2
traitlets==4.3.2
urllib3==1.25.3
wcwidth==0.1.7
webencodings==0.5.1
widgetsnbextension==3.5.1
pandas
click
papermill
prompt_toolkit

69
requirements_dev.txt Normal file
View File

@@ -0,0 +1,69 @@
ansiwrap
attrs
backcall
bleach
certifi
chardet
Click
colorama
cycler
decorator
defusedxml
entrypoints
future
idna
importlib-resources
ipykernel
ipython
ipython-genutils
ipywidgets
jedi
Jinja2
jsonschema
jupyter
jupyter-client
jupyter-console
jupyter-core
jupytex
kiwisolver
MarkupSafe
matplotlib
mistune
nbconvert
nbformat
notebook
numpy
pandas
pandocfilters
papermill
parso
pexpect
pickleshare
prometheus-client
prompt-toolkit
ptyprocess
Pygments
pyparsing
pyrsistent
python-dateutil
pytz
PyYAML
pyzmq
qtconsole
-e git+git_opytex:/lafrite/recopytex.git@e9a8310f151ead60434ae944d726a2fd22b23d06#egg=Recopytex
requests
scipy
seaborn
Send2Trash
six
tenacity
terminado
testpath
textwrap3
tornado
tqdm
traitlets
urllib3
wcwidth
webencodings
widgetsnbextension