2013-2014/4e/Nombres_Calculs/Equation/exo/exo_formel_1.tex

122 lines
4.0 KiB
TeX
Raw Permalink Normal View History

2017-06-16 06:46:40 +00:00
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
\usepackage{multicol}
% Title Page
\title{Identités remarquables et équations- Exercices}
\author{}
\date{}
\fancyhead[L]{Troisième}
\fancyhead[C]{\Thetitle}
\fancyhead[R]{\thepage}
\begin{document}
\thispagestyle{empty}
\begin{Exo}
\exo{Équations de degrés 1}
\begin{center}
\framebox{\parbox{0.4\textwidth}{
Résoudre l'équation $3x + 5 = 0$.
\begin{eqnarray*}
3x + 5 = 0 & \hspace{1cm} & \mbox{On ajoute l'opposé de 5} \\
3x + 5 \mathbf{+ (-5)} = \mathbf{-5} && \\
3x = -5 & \hspace{1cm} & \mbox{On multiplie par l'inverse de 3} \\
\mathbf{\frac{1}{3} \times }3x = \mathbf{ \frac{1}{3} \times }(-5) && \\
x = \frac{-5}{3}
\end{eqnarray*}
La solution est $x = \frac{-5}{3}$.
}}
\end{center}
\begin{enumerate}
\item Résoudre l'équation $4x + 7 = 0$.
\begin{eqnarray*}
4x + 7 = 0 & \hspace{0.5cm} & \mbox{On ajoute l'opposé de \parbox{1cm}{\dotfill}} \\[0.5cm]
4x + 7 + \parbox{1.5cm}{\dotfill}= \parbox{1.5cm}{\dotfill}&& \\[0.5cm]
4x = \parbox{1cm}{\dotfill}& \hspace{0.5cm} & \mbox{On multiplie par l'inverse de \parbox{1cm}{\dotfill}} \\[0.5cm]
\parbox{1.5cm}{\dotfill} \times 4x = \parbox{1.5cm}{\dotfill} \times \parbox{1cm}{\dotfill} && \\[0.5cm]
x = \frac{\parbox{1cm}{\dotfill}}{\parbox{1cm}{\dotfill}}
\end{eqnarray*}
La solution est \parbox{2cm}{\dotfill}.
\item Résoudre les équations suivantes
\begin{multicols}{2}
\begin{enumerate}
\item $2x + 1 = 0$
\item $6x + 12 = 0$
\item $3x - 3 = 0$
\item $8x - 4 = 0$
\columnbreak
\item $-6x - 3 = 0$
\item $9 + 3x = 0$
\item $5 + 3x = 0$
\item $\frac{2}{3}x + 3 = 0$
\end{enumerate}
\end{multicols}
\end{enumerate}
\end{Exo}
\eject
\setcounter{exo}{0}
\begin{Exo}
\exo{Équations de degrés 1}
\begin{center}
\framebox{\parbox{0.4\textwidth}{
Résoudre l'équation $3x + 5 = 0$.
\begin{eqnarray*}
3x + 5 = 0 & \hspace{1cm} & \mbox{On ajoute l'opposé de 5} \\
3x + 5 \mathbf{+ (-5)} = \mathbf{-5} && \\
3x = -5 & \hspace{1cm} & \mbox{On multiplie par l'inverse de 3} \\
\mathbf{\frac{1}{3} \times }3x = \mathbf{ \frac{1}{3} \times }(-5) && \\
x = \frac{-5}{3}
\end{eqnarray*}
La solution est $x = \frac{-5}{3}$.
}}
\end{center}
\begin{enumerate}
\item Résoudre l'équation $4x + 7 = 0$.
\begin{eqnarray*}
4x + 7 = 0 & \hspace{0.5cm} & \mbox{On ajoute l'opposé de \parbox{1cm}{\dotfill}} \\[0.5cm]
4x + 7 + \parbox{1.5cm}{\dotfill}= \parbox{1.5cm}{\dotfill}&& \\[0.5cm]
4x = \parbox{1cm}{\dotfill}& \hspace{0.5cm} & \mbox{On multiplie par l'inverse de \parbox{1cm}{\dotfill}} \\[0.5cm]
\parbox{1.5cm}{\dotfill} \times 4x = \parbox{1.5cm}{\dotfill} \times \parbox{1cm}{\dotfill} && \\[0.5cm]
x = \frac{\parbox{1cm}{\dotfill}}{\parbox{1cm}{\dotfill}}
\end{eqnarray*}
La solution est \parbox{2cm}{\dotfill}.
\item Résoudre les équations suivantes
\begin{multicols}{2}
\begin{enumerate}
\item $2x + 1 = 0$
\item $6x + 12 = 0$
\item $3x - 3 = 0$
\item $8x - 4 = 0$
\columnbreak
\item $-6x - 3 = 0$
\item $9 + 3x = 0$
\item $5 + 3x = 0$
\item $\frac{2}{3}x + 3 = 0$
\end{enumerate}
\end{multicols}
\end{enumerate}
\end{Exo}
\eject
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End: