Import work from year 2013-2014
This commit is contained in:
BIN
3e/Geometrie/Trigo/Bilan/bilan.pdf
Normal file
BIN
3e/Geometrie/Trigo/Bilan/bilan.pdf
Normal file
Binary file not shown.
108
3e/Geometrie/Trigo/Bilan/bilan.tex
Normal file
108
3e/Geometrie/Trigo/Bilan/bilan.tex
Normal file
@@ -0,0 +1,108 @@
|
||||
\documentclass[a4paper,10pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
|
||||
% Title Page
|
||||
\title{Trigonométrie - Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Troisième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{empty}
|
||||
|
||||
|
||||
En reprenant la rédaction des séances précédentes, faire les exercices suivants.
|
||||
\begin{enumerate}
|
||||
\item $ABC$ est un triangle rectangle en $B$ tel que $AB=10cm $ et $\widehat{BAC} = 46$°. Calculer la longueur $AC$.
|
||||
\item $DEF$ est un triangle rectangle en $E$ tel que $DE=10cm $ et $DF = 15cm$° . Calculer la longueur $EF$.
|
||||
\item 43 p 213 a/
|
||||
\item 36 p 212 a/
|
||||
\item 40 p 213
|
||||
\item 49 p 214
|
||||
\item 46p 214
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
|
||||
En reprenant la rédaction des séances précédentes, faire les exercices suivants.
|
||||
\begin{enumerate}
|
||||
\item $ABC$ est un triangle rectangle en $B$ tel que $AB=10cm $ et $\widehat{BAC} = 46$°. Calculer la longueur $AC$.
|
||||
\item $DEF$ est un triangle rectangle en $E$ tel que $DE=10cm $ et $DF = 15cm$° . Calculer la longueur $EF$.
|
||||
\item 43 p 213 a/
|
||||
\item 36 p 212 a/
|
||||
\item 40 p 213
|
||||
\item 49 p 214
|
||||
\item 46p 214
|
||||
\end{enumerate}
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
|
||||
En reprenant la rédaction des séances précédentes, faire les exercices suivants.
|
||||
\begin{enumerate}
|
||||
\item $ABC$ est un triangle rectangle en $B$ tel que $AB=10cm $ et $\widehat{BAC} = 46$°. Calculer la longueur $AC$.
|
||||
\item $DEF$ est un triangle rectangle en $E$ tel que $DE=10cm $ et $DF = 15cm$° . Calculer la longueur $EF$.
|
||||
\item 43 p 213 a/
|
||||
\item 36 p 212 a/
|
||||
\item 40 p 213
|
||||
\item 49 p 214
|
||||
\item 46p 214
|
||||
\end{enumerate}
|
||||
|
||||
\vfill \eject
|
||||
|
||||
|
||||
En reprenant la rédaction des séances précédentes, faire les exercices suivants.
|
||||
\begin{enumerate}
|
||||
\item $ABC$ est un triangle rectangle en $B$ tel que $AB=10cm $ et $\widehat{BAC} = 46$°. Calculer la longueur $AC$.
|
||||
\item $DEF$ est un triangle rectangle en $E$ tel que $DE=10cm $ et $DF = 15cm$° . Calculer la longueur $EF$.
|
||||
\item 43 p 213 a/
|
||||
\item 36 p 212 a/
|
||||
\item 40 p 213
|
||||
\item 49 p 214
|
||||
\item 46p 214
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
|
||||
En reprenant la rédaction des séances précédentes, faire les exercices suivants.
|
||||
\begin{enumerate}
|
||||
\item $ABC$ est un triangle rectangle en $B$ tel que $AB=10cm $ et $\widehat{BAC} = 46$°. Calculer la longueur $AC$.
|
||||
\item $DEF$ est un triangle rectangle en $E$ tel que $DE=10cm $ et $DF = 15cm$° . Calculer la longueur $EF$.
|
||||
\item 43 p 213 a/
|
||||
\item 36 p 212 a/
|
||||
\item 40 p 213
|
||||
\item 49 p 214
|
||||
\item 46p 214
|
||||
\end{enumerate}
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
|
||||
En reprenant la rédaction des séances précédentes, faire les exercices suivants.
|
||||
\begin{enumerate}
|
||||
\item $ABC$ est un triangle rectangle en $B$ tel que $AB=10cm $ et $\widehat{BAC} = 46$°. Calculer la longueur $AC$.
|
||||
\item $DEF$ est un triangle rectangle en $E$ tel que $DE=10cm $ et $DF = 15cm$° . Calculer la longueur $EF$.
|
||||
\item 43 p 213 a/
|
||||
\item 36 p 212 a/
|
||||
\item 40 p 213
|
||||
\item 49 p 214
|
||||
\item 46p 214
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
3e/Geometrie/Trigo/Bilan/fig/triangleABC.pdf
Normal file
BIN
3e/Geometrie/Trigo/Bilan/fig/triangleABC.pdf
Normal file
Binary file not shown.
84
3e/Geometrie/Trigo/Bilan/fig/triangleABC.svg
Normal file
84
3e/Geometrie/Trigo/Bilan/fig/triangleABC.svg
Normal file
@@ -0,0 +1,84 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
version="1.1"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2">
|
||||
<defs
|
||||
id="defs4" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
transform="translate(0,-308.2677)"
|
||||
id="layer1">
|
||||
<path
|
||||
d="M 953.69881,806.19519 279.79859,470.03977 76.127976,878.34398 z"
|
||||
id="path2985"
|
||||
style="fill:none;stroke:#000000;stroke-width:6.20190287;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
width="32.967884"
|
||||
height="32.967884"
|
||||
x="295.7211"
|
||||
y="-493.15671"
|
||||
transform="matrix(-0.4463692,0.89484889,-0.89484889,-0.4463692,0,0)"
|
||||
id="rect3811"
|
||||
style="fill:none;stroke:#000000;stroke-width:6.20190287;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 646.02575,614.29559 a 15.25239,15.25239 0 0 1 13.12801,-15.10372"
|
||||
transform="matrix(1.9349903,3.8791294,3.8791294,-1.9349903,-2816.3834,-578.47512)"
|
||||
id="path3813"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<text
|
||||
x="991.2077"
|
||||
y="800.80634"
|
||||
transform="matrix(0.99992837,0.01196908,-0.01196908,0.99992837,0,0)"
|
||||
id="text4180"
|
||||
xml:space="preserve"
|
||||
style="font-size:55.81712723px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="991.2077"
|
||||
y="800.80634"
|
||||
id="tspan4182">A</tspan></text>
|
||||
<text
|
||||
x="276.50998"
|
||||
y="458.11118"
|
||||
transform="matrix(0.99994352,-0.01062789,0.01062789,0.99994352,0,0)"
|
||||
id="text4184"
|
||||
xml:space="preserve"
|
||||
style="font-size:55.81712723px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="276.50998"
|
||||
y="458.11118"
|
||||
id="tspan4186">B</tspan></text>
|
||||
<text
|
||||
x="-39.794636"
|
||||
y="944.56842"
|
||||
transform="matrix(0.99600213,-0.08932949,0.08932949,0.99600213,0,0)"
|
||||
id="text4188"
|
||||
xml:space="preserve"
|
||||
style="font-size:55.81712723px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="-39.794636"
|
||||
y="944.56842"
|
||||
id="tspan4190">C</tspan></text>
|
||||
<path
|
||||
d="m 646.02796,614.03579 a 15.25239,15.25239 0 0 1 11.77154,-14.5906"
|
||||
transform="matrix(1.9349903,3.8791294,3.8791294,-1.9349903,-2800.9024,-572.6003)"
|
||||
id="path3813-0"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 3.7 KiB |
BIN
3e/Geometrie/Trigo/Bilan/fig/triangleDEF.pdf
Normal file
BIN
3e/Geometrie/Trigo/Bilan/fig/triangleDEF.pdf
Normal file
Binary file not shown.
BIN
3e/Geometrie/Trigo/Bilan/fig/triangleGHI.pdf
Normal file
BIN
3e/Geometrie/Trigo/Bilan/fig/triangleGHI.pdf
Normal file
Binary file not shown.
BIN
3e/Geometrie/Trigo/Bilan/fig/triangleJKL.pdf
Normal file
BIN
3e/Geometrie/Trigo/Bilan/fig/triangleJKL.pdf
Normal file
Binary file not shown.
BIN
3e/Geometrie/Trigo/Bilan/fig/triangleRectABC.pdf
Normal file
BIN
3e/Geometrie/Trigo/Bilan/fig/triangleRectABC.pdf
Normal file
Binary file not shown.
BIN
3e/Geometrie/Trigo/Conn/Conn0331.pdf
Normal file
BIN
3e/Geometrie/Trigo/Conn/Conn0331.pdf
Normal file
Binary file not shown.
71
3e/Geometrie/Trigo/Conn/Conn0331.tex
Normal file
71
3e/Geometrie/Trigo/Conn/Conn0331.tex
Normal file
@@ -0,0 +1,71 @@
|
||||
\documentclass{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classConn}
|
||||
|
||||
|
||||
% Title Page
|
||||
\title{}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{multicols}{2}
|
||||
|
||||
Nom - Prénom:
|
||||
\section{Connaissance}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Compléter avec le nom des éléments
|
||||
|
||||
\begin{minipage}[h]{0.2\textwidth}
|
||||
\includegraphics[scale=0.2]{./fig/triangleDEF}
|
||||
\end{minipage}
|
||||
\begin{minipage}[h]{0.2\textwidth}
|
||||
Nom de l'angle \parbox{2cm}{\dotfill} \\[0.5cm]
|
||||
Coté opposé \parbox{2cm}{\dotfill} \\[0.5cm]
|
||||
Hypothénuse \parbox{2cm}{\dotfill} \\[0.5cm]
|
||||
\end{minipage}
|
||||
|
||||
|
||||
|
||||
\item Compléter les formules suivantes \\[0.5cm]
|
||||
|
||||
\begin{eqnarray*}
|
||||
\cos( \widehat{BAC}) = \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \\[2cm]
|
||||
\tan( \widehat{BAC}) = \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}}
|
||||
\end{eqnarray*}
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
|
||||
\columnbreak
|
||||
Nom - Prénom
|
||||
\section{Connaissance}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Compléter avec le nom des éléments
|
||||
|
||||
\begin{minipage}[h]{0.2\textwidth}
|
||||
\includegraphics[scale=0.2]{./fig/triangleGHI}
|
||||
\end{minipage}
|
||||
\begin{minipage}[h]{0.2\textwidth}
|
||||
Nom de l'angle \parbox{2cm}{\dotfill} \\[0.5cm]
|
||||
Coté adjacent \parbox{2cm}{\dotfill} \\[0.5cm]
|
||||
Hypothénuse \parbox{2cm}{\dotfill} \\[0.5cm]
|
||||
\end{minipage}
|
||||
|
||||
\item Compléter les formules suivantes
|
||||
\begin{eqnarray*}
|
||||
\tan( \widehat{BAC}) = \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \\[2cm]
|
||||
\sin( \widehat{BAC}) = \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}}
|
||||
\end{eqnarray*}
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\end{multicols}
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
BIN
3e/Geometrie/Trigo/Conn/fig/triangleABC.pdf
Normal file
BIN
3e/Geometrie/Trigo/Conn/fig/triangleABC.pdf
Normal file
Binary file not shown.
84
3e/Geometrie/Trigo/Conn/fig/triangleABC.svg
Normal file
84
3e/Geometrie/Trigo/Conn/fig/triangleABC.svg
Normal file
@@ -0,0 +1,84 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
version="1.1"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2">
|
||||
<defs
|
||||
id="defs4" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
transform="translate(0,-308.2677)"
|
||||
id="layer1">
|
||||
<path
|
||||
d="M 953.69881,806.19519 279.79859,470.03977 76.127976,878.34398 z"
|
||||
id="path2985"
|
||||
style="fill:none;stroke:#000000;stroke-width:6.20190287;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
width="32.967884"
|
||||
height="32.967884"
|
||||
x="295.7211"
|
||||
y="-493.15671"
|
||||
transform="matrix(-0.4463692,0.89484889,-0.89484889,-0.4463692,0,0)"
|
||||
id="rect3811"
|
||||
style="fill:none;stroke:#000000;stroke-width:6.20190287;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 646.02575,614.29559 a 15.25239,15.25239 0 0 1 13.12801,-15.10372"
|
||||
transform="matrix(1.9349903,3.8791294,3.8791294,-1.9349903,-2816.3834,-578.47512)"
|
||||
id="path3813"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<text
|
||||
x="991.2077"
|
||||
y="800.80634"
|
||||
transform="matrix(0.99992837,0.01196908,-0.01196908,0.99992837,0,0)"
|
||||
id="text4180"
|
||||
xml:space="preserve"
|
||||
style="font-size:55.81712723px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="991.2077"
|
||||
y="800.80634"
|
||||
id="tspan4182">A</tspan></text>
|
||||
<text
|
||||
x="276.50998"
|
||||
y="458.11118"
|
||||
transform="matrix(0.99994352,-0.01062789,0.01062789,0.99994352,0,0)"
|
||||
id="text4184"
|
||||
xml:space="preserve"
|
||||
style="font-size:55.81712723px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="276.50998"
|
||||
y="458.11118"
|
||||
id="tspan4186">B</tspan></text>
|
||||
<text
|
||||
x="-39.794636"
|
||||
y="944.56842"
|
||||
transform="matrix(0.99600213,-0.08932949,0.08932949,0.99600213,0,0)"
|
||||
id="text4188"
|
||||
xml:space="preserve"
|
||||
style="font-size:55.81712723px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="-39.794636"
|
||||
y="944.56842"
|
||||
id="tspan4190">C</tspan></text>
|
||||
<path
|
||||
d="m 646.02796,614.03579 a 15.25239,15.25239 0 0 1 11.77154,-14.5906"
|
||||
transform="matrix(1.9349903,3.8791294,3.8791294,-1.9349903,-2800.9024,-572.6003)"
|
||||
id="path3813-0"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 3.7 KiB |
BIN
3e/Geometrie/Trigo/Conn/fig/triangleDEF.pdf
Normal file
BIN
3e/Geometrie/Trigo/Conn/fig/triangleDEF.pdf
Normal file
Binary file not shown.
BIN
3e/Geometrie/Trigo/Conn/fig/triangleGHI.pdf
Normal file
BIN
3e/Geometrie/Trigo/Conn/fig/triangleGHI.pdf
Normal file
Binary file not shown.
BIN
3e/Geometrie/Trigo/Conn/fig/triangleRectABC.pdf
Normal file
BIN
3e/Geometrie/Trigo/Conn/fig/triangleRectABC.pdf
Normal file
Binary file not shown.
BIN
3e/Geometrie/Trigo/cal_angle/cal_angle.pdf
Normal file
BIN
3e/Geometrie/Trigo/cal_angle/cal_angle.pdf
Normal file
Binary file not shown.
103
3e/Geometrie/Trigo/cal_angle/cal_angle.tex
Normal file
103
3e/Geometrie/Trigo/cal_angle/cal_angle.tex
Normal file
@@ -0,0 +1,103 @@
|
||||
\documentclass[a4paper,10pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
|
||||
% Title Page
|
||||
\title{Trigonométrie - Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Troisième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{fancy}
|
||||
|
||||
\begin{center}
|
||||
\large{Calculer un angle}
|
||||
\end{center}
|
||||
\normalsize
|
||||
|
||||
\begin{Exo}
|
||||
|
||||
\textbf{Avec la figure suivante, calculer la mesure de l'angle $\widehat{BAC}$}.
|
||||
\\[0.3cm]
|
||||
|
||||
\begin{minipage}[h]{0.15\textwidth}
|
||||
\includegraphics[scale=0.15]{./fig/triangleABC}
|
||||
\end{minipage}
|
||||
\begin{minipage}[h]{0.3\textwidth}
|
||||
\textit{Questions à se poser}
|
||||
\begin{itemize}
|
||||
\item On connait
|
||||
\begin{center}
|
||||
hypoténuse\hspace{0.5cm} opposé \hspace{0.5cm}adjacent \hspace{0.5cm}angle
|
||||
\end{center}
|
||||
\item On cherche
|
||||
\begin{center}
|
||||
hypoténuse\hspace{0.5cm} opposé \hspace{0.5cm}adjacent \hspace{0.5cm}angle
|
||||
\end{center}
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
\begin{itemize}
|
||||
\item On utilise la formule
|
||||
\begin{eqnarray*}
|
||||
\cos( \widehat{BAC}) = \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.7cm}
|
||||
\sin( \widehat{BAC}) = \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.7cm}
|
||||
\tan( \widehat{BAC}) = \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{itemize}
|
||||
\textit{Rédaction}
|
||||
|
||||
.\\[0.3cm]
|
||||
\noindent\fbox{\parbox{\linewidth-2\fboxrule-2\fboxsep}{
|
||||
.\\[0.3cm]
|
||||
\parbox{1cm}{\dotfill} est un triangle rectangle en \parbox{0.5cm}{\dotfill} donc
|
||||
\begin{eqnarray*}
|
||||
\parbox{1cm}{\dotfill}(\widehat{BAC}) &=& \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.7cm} \textit{(avec les lettres)}\\[0.3cm]
|
||||
\parbox{1cm}{\dotfill}(\widehat{BAC}) &=& \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.7cm} \textit{(avec les chiffres)} \\[0.3cm]
|
||||
\parbox{1cm}{\dotfill}(\widehat{BAC}) &=& \parbox{1cm}{\dotfill} \\[0.3cm]
|
||||
\widehat{BAC} &=& \mbox{Arc}\parbox{1cm}{\dotfill}(\parbox{1cm}{\dotfill}) = \parbox{1cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
Donc l'angle $\widehat{BAC} = $\parbox{1cm}{\dotfill}°.
|
||||
}}
|
||||
\end{Exo}
|
||||
|
||||
\vfill\eject
|
||||
|
||||
\begin{Exo}
|
||||
En reprenant la rédaction présenté au dessus, faire les exercices suivants.
|
||||
\begin{enumerate}
|
||||
\item Calculer la mesure de l'angle $\widehat{DEF}$
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/triangleDEF}
|
||||
\end{center}
|
||||
\item Calculer la mesure de l'angle $\widehat{HGI}$
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/triangleGHI}
|
||||
\end{center}
|
||||
\item $JKL$ est un triangle rectangle en $L$ tel que $JK=3cm $ et $JL = 2cm$.
|
||||
\begin{enumerate}
|
||||
\item Faire une figure à main levée.
|
||||
\item Calculer la mesure de l'angle $\widehat{JKL}$.
|
||||
\end{enumerate}
|
||||
\item $MNO$ est un triangle rectangle en $O$ tel que $OM=3cm $ et $ON = 2cm$.
|
||||
\begin{enumerate}
|
||||
\item Faire une figure à main levée.
|
||||
\item Calculer la mesure de l'angle $\widehat{NMO}$.
|
||||
\end{enumerate}
|
||||
\item $PQR$ est un triangle rectangle en $P$ tel que $RQ=3cm $ et $QP = 2cm$. Calculer la mesure de l'angle $\widehat{QRP}$.
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
3e/Geometrie/Trigo/cal_angle/fig/triangleABC.pdf
Normal file
BIN
3e/Geometrie/Trigo/cal_angle/fig/triangleABC.pdf
Normal file
Binary file not shown.
84
3e/Geometrie/Trigo/cal_angle/fig/triangleABC.svg
Normal file
84
3e/Geometrie/Trigo/cal_angle/fig/triangleABC.svg
Normal file
@@ -0,0 +1,84 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
version="1.1"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2">
|
||||
<defs
|
||||
id="defs4" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
transform="translate(0,-308.2677)"
|
||||
id="layer1">
|
||||
<path
|
||||
d="M 953.69881,806.19519 279.79859,470.03977 76.127976,878.34398 z"
|
||||
id="path2985"
|
||||
style="fill:none;stroke:#000000;stroke-width:6.20190287;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
width="32.967884"
|
||||
height="32.967884"
|
||||
x="295.7211"
|
||||
y="-493.15671"
|
||||
transform="matrix(-0.4463692,0.89484889,-0.89484889,-0.4463692,0,0)"
|
||||
id="rect3811"
|
||||
style="fill:none;stroke:#000000;stroke-width:6.20190287;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 646.02575,614.29559 a 15.25239,15.25239 0 0 1 13.12801,-15.10372"
|
||||
transform="matrix(1.9349903,3.8791294,3.8791294,-1.9349903,-2816.3834,-578.47512)"
|
||||
id="path3813"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<text
|
||||
x="991.2077"
|
||||
y="800.80634"
|
||||
transform="matrix(0.99992837,0.01196908,-0.01196908,0.99992837,0,0)"
|
||||
id="text4180"
|
||||
xml:space="preserve"
|
||||
style="font-size:55.81712723px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="991.2077"
|
||||
y="800.80634"
|
||||
id="tspan4182">A</tspan></text>
|
||||
<text
|
||||
x="276.50998"
|
||||
y="458.11118"
|
||||
transform="matrix(0.99994352,-0.01062789,0.01062789,0.99994352,0,0)"
|
||||
id="text4184"
|
||||
xml:space="preserve"
|
||||
style="font-size:55.81712723px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="276.50998"
|
||||
y="458.11118"
|
||||
id="tspan4186">B</tspan></text>
|
||||
<text
|
||||
x="-39.794636"
|
||||
y="944.56842"
|
||||
transform="matrix(0.99600213,-0.08932949,0.08932949,0.99600213,0,0)"
|
||||
id="text4188"
|
||||
xml:space="preserve"
|
||||
style="font-size:55.81712723px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="-39.794636"
|
||||
y="944.56842"
|
||||
id="tspan4190">C</tspan></text>
|
||||
<path
|
||||
d="m 646.02796,614.03579 a 15.25239,15.25239 0 0 1 11.77154,-14.5906"
|
||||
transform="matrix(1.9349903,3.8791294,3.8791294,-1.9349903,-2800.9024,-572.6003)"
|
||||
id="path3813-0"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 3.7 KiB |
BIN
3e/Geometrie/Trigo/cal_angle/fig/triangleDEF.pdf
Normal file
BIN
3e/Geometrie/Trigo/cal_angle/fig/triangleDEF.pdf
Normal file
Binary file not shown.
BIN
3e/Geometrie/Trigo/cal_angle/fig/triangleGHI.pdf
Normal file
BIN
3e/Geometrie/Trigo/cal_angle/fig/triangleGHI.pdf
Normal file
Binary file not shown.
BIN
3e/Geometrie/Trigo/cal_angle/fig/triangleRectABC.pdf
Normal file
BIN
3e/Geometrie/Trigo/cal_angle/fig/triangleRectABC.pdf
Normal file
Binary file not shown.
23
3e/Geometrie/Trigo/cal_angle/index.rst
Normal file
23
3e/Geometrie/Trigo/cal_angle/index.rst
Normal file
@@ -0,0 +1,23 @@
|
||||
Notes sur un fiche d'exercice pour le calcul d'un angle pour les 3e
|
||||
###################################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Geometrie, Exo
|
||||
:category: 3e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers cal_angle.tex <cal_angle.tex>`_
|
||||
|
||||
`Lien vers cal_angle.pdf <cal_angle.pdf>`_
|
||||
|
||||
`Lien vers fig/triangleDEF.pdf <fig/triangleDEF.pdf>`_
|
||||
|
||||
`Lien vers fig/triangleABC.pdf <fig/triangleABC.pdf>`_
|
||||
|
||||
`Lien vers fig/triangleGHI.pdf <fig/triangleGHI.pdf>`_
|
||||
|
||||
`Lien vers fig/triangleRectABC.pdf <fig/triangleRectABC.pdf>`_
|
||||
BIN
3e/Geometrie/Trigo/cal_long/cal_long.pdf
Normal file
BIN
3e/Geometrie/Trigo/cal_long/cal_long.pdf
Normal file
Binary file not shown.
120
3e/Geometrie/Trigo/cal_long/cal_long.tex
Normal file
120
3e/Geometrie/Trigo/cal_long/cal_long.tex
Normal file
@@ -0,0 +1,120 @@
|
||||
\documentclass[a4paper,10pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
|
||||
% Title Page
|
||||
\title{Trigonométrie - Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Troisième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{empty}
|
||||
|
||||
\begin{center}
|
||||
\large{Calculer une longueur}
|
||||
\end{center}
|
||||
\normalsize
|
||||
|
||||
\begin{Exo}
|
||||
|
||||
\begin{enumerate}
|
||||
\item \textbf{Avec la figure suivante, calculer la longueur $BA$.}
|
||||
\\[0.3cm]
|
||||
|
||||
\begin{minipage}[h]{0.15\textwidth}
|
||||
\includegraphics[scale=0.15]{./fig/triangleABC}
|
||||
\end{minipage}
|
||||
\begin{minipage}[h]{0.3\textwidth}
|
||||
\textit{Questions à se poser}
|
||||
\begin{itemize}
|
||||
\item On connait
|
||||
\begin{center}
|
||||
hypoténuse\hspace{0.5cm} opposé \hspace{0.5cm}adjacent \hspace{0.5cm}angle
|
||||
\end{center}
|
||||
\item On cherche
|
||||
\begin{center}
|
||||
hypoténuse\hspace{0.5cm} opposé \hspace{0.5cm}adjacent \hspace{0.5cm}angle
|
||||
\end{center}
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
\begin{itemize}
|
||||
\item On utilise la formule
|
||||
\begin{eqnarray*}
|
||||
\cos( \widehat{BAC}) = \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.5cm}
|
||||
\sin( \widehat{BAC}) = \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.5cm}
|
||||
\tan( \widehat{BAC}) = \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{itemize}
|
||||
\textit{Rédaction:}
|
||||
|
||||
\noindent\fbox{\parbox{\linewidth-2\fboxrule-2\fboxsep}{
|
||||
.\\[0.2cm]
|
||||
\parbox{1cm}{\dotfill} est un triangle rectangle en \parbox{0.5cm}{\dotfill} donc
|
||||
\begin{eqnarray*}
|
||||
\parbox{1cm}{\dotfill}(\widehat{BAC}) &=& \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.7cm} \textit{(avec les lettres)}\\[0.3cm]
|
||||
\parbox{1cm}{\dotfill}(\parbox{1cm}{\dotfill}) &=& \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.7cm} \textit{(avec les chiffres)} \\[0.3cm]
|
||||
\parbox{1cm}{\dotfill} &=& \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.7cm} \textit{(avec les chiffres)} \\[0.3cm]
|
||||
BA & = & \parbox{1cm}{\dotfill} \times \parbox{1cm}{\dotfill} = \parbox{1cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
Donc $BA = \parbox{1cm}{\dotfill}$
|
||||
}}
|
||||
|
||||
\item \textbf{Calculer la longueur $EF$}
|
||||
|
||||
\begin{minipage}[h]{0.15\textwidth}
|
||||
\includegraphics[scale=0.2]{./fig/triangleDEF}
|
||||
\end{minipage}
|
||||
\begin{minipage}[h]{0.35\textwidth}
|
||||
\textit{Rédaction:}
|
||||
|
||||
\noindent\fbox{\parbox{\linewidth-2\fboxrule-2\fboxsep-0.1\textwidth}{
|
||||
.\\[0.2cm]
|
||||
\parbox{1cm}{\dotfill} est un triangle rectangle en \parbox{0.5cm}{\dotfill} donc
|
||||
\begin{eqnarray*}
|
||||
\parbox{1cm}{\dotfill}(\widehat{EFD}) &=& \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.7cm} \textit{(avec les lettres)}\\[0.3cm]
|
||||
\parbox{1cm}{\dotfill}(\parbox{1cm}{\dotfill}) &=& \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.7cm} \textit{(avec les chiffres)} \\[0.3cm]
|
||||
\parbox{1cm}{\dotfill} &=& \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.7cm} \textit{(avec les chiffres)} \\[0.3cm]
|
||||
EF & = & \frac{ \parbox{1cm}{\dotfill} }{ \parbox{1cm}{\dotfill}} = \parbox{1cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
Donc $EF = \parbox{1cm}{\dotfill}$
|
||||
}}
|
||||
\end{minipage}
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\vfill\eject
|
||||
|
||||
\begin{Exo}
|
||||
En reprenant la rédaction présenté au dessus, faire les exercices suivants.
|
||||
\begin{enumerate}
|
||||
\item Calculer la longueur $HI$.
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/triangleGHI}
|
||||
\end{center}
|
||||
\item Calculer la longueur $LK$. On donne $\widehat{JKL} = 10$°.
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/triangleJKL}
|
||||
\end{center}
|
||||
\item $MNO$ est un triangle rectangle en $M$ tel que $OM=3cm$ et $\widehat{OMN} = 60$°.
|
||||
\begin{enumerate}
|
||||
\item Faire une figure à main levée.
|
||||
\item Calculer $NO$.
|
||||
\end{enumerate}
|
||||
\item $PQR$ est un triangle rectangle en $P$ tel que $RQ=10cm $ et $\widehat{PRQ} = 98$°. Calculer la longueur $QP$.
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
3e/Geometrie/Trigo/cal_long/fig/triangleABC.pdf
Normal file
BIN
3e/Geometrie/Trigo/cal_long/fig/triangleABC.pdf
Normal file
Binary file not shown.
84
3e/Geometrie/Trigo/cal_long/fig/triangleABC.svg
Normal file
84
3e/Geometrie/Trigo/cal_long/fig/triangleABC.svg
Normal file
@@ -0,0 +1,84 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
version="1.1"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2">
|
||||
<defs
|
||||
id="defs4" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
transform="translate(0,-308.2677)"
|
||||
id="layer1">
|
||||
<path
|
||||
d="M 953.69881,806.19519 279.79859,470.03977 76.127976,878.34398 z"
|
||||
id="path2985"
|
||||
style="fill:none;stroke:#000000;stroke-width:6.20190287;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
width="32.967884"
|
||||
height="32.967884"
|
||||
x="295.7211"
|
||||
y="-493.15671"
|
||||
transform="matrix(-0.4463692,0.89484889,-0.89484889,-0.4463692,0,0)"
|
||||
id="rect3811"
|
||||
style="fill:none;stroke:#000000;stroke-width:6.20190287;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 646.02575,614.29559 a 15.25239,15.25239 0 0 1 13.12801,-15.10372"
|
||||
transform="matrix(1.9349903,3.8791294,3.8791294,-1.9349903,-2816.3834,-578.47512)"
|
||||
id="path3813"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<text
|
||||
x="991.2077"
|
||||
y="800.80634"
|
||||
transform="matrix(0.99992837,0.01196908,-0.01196908,0.99992837,0,0)"
|
||||
id="text4180"
|
||||
xml:space="preserve"
|
||||
style="font-size:55.81712723px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="991.2077"
|
||||
y="800.80634"
|
||||
id="tspan4182">A</tspan></text>
|
||||
<text
|
||||
x="276.50998"
|
||||
y="458.11118"
|
||||
transform="matrix(0.99994352,-0.01062789,0.01062789,0.99994352,0,0)"
|
||||
id="text4184"
|
||||
xml:space="preserve"
|
||||
style="font-size:55.81712723px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="276.50998"
|
||||
y="458.11118"
|
||||
id="tspan4186">B</tspan></text>
|
||||
<text
|
||||
x="-39.794636"
|
||||
y="944.56842"
|
||||
transform="matrix(0.99600213,-0.08932949,0.08932949,0.99600213,0,0)"
|
||||
id="text4188"
|
||||
xml:space="preserve"
|
||||
style="font-size:55.81712723px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="-39.794636"
|
||||
y="944.56842"
|
||||
id="tspan4190">C</tspan></text>
|
||||
<path
|
||||
d="m 646.02796,614.03579 a 15.25239,15.25239 0 0 1 11.77154,-14.5906"
|
||||
transform="matrix(1.9349903,3.8791294,3.8791294,-1.9349903,-2800.9024,-572.6003)"
|
||||
id="path3813-0"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 3.7 KiB |
BIN
3e/Geometrie/Trigo/cal_long/fig/triangleDEF.pdf
Normal file
BIN
3e/Geometrie/Trigo/cal_long/fig/triangleDEF.pdf
Normal file
Binary file not shown.
BIN
3e/Geometrie/Trigo/cal_long/fig/triangleGHI.pdf
Normal file
BIN
3e/Geometrie/Trigo/cal_long/fig/triangleGHI.pdf
Normal file
Binary file not shown.
BIN
3e/Geometrie/Trigo/cal_long/fig/triangleJKL.pdf
Normal file
BIN
3e/Geometrie/Trigo/cal_long/fig/triangleJKL.pdf
Normal file
Binary file not shown.
BIN
3e/Geometrie/Trigo/cal_long/fig/triangleRectABC.pdf
Normal file
BIN
3e/Geometrie/Trigo/cal_long/fig/triangleRectABC.pdf
Normal file
Binary file not shown.
25
3e/Geometrie/Trigo/cal_long/index.rst
Normal file
25
3e/Geometrie/Trigo/cal_long/index.rst
Normal file
@@ -0,0 +1,25 @@
|
||||
Notes sur le calcul d'un longeur avec les formules trigonométriques pour les 3e
|
||||
###############################################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Geometrie, Exo
|
||||
:category: 3e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers cal_long.pdf <cal_long.pdf>`_
|
||||
|
||||
`Lien vers cal_long.tex <cal_long.tex>`_
|
||||
|
||||
`Lien vers fig/triangleDEF.pdf <fig/triangleDEF.pdf>`_
|
||||
|
||||
`Lien vers fig/triangleJKL.pdf <fig/triangleJKL.pdf>`_
|
||||
|
||||
`Lien vers fig/triangleABC.pdf <fig/triangleABC.pdf>`_
|
||||
|
||||
`Lien vers fig/triangleGHI.pdf <fig/triangleGHI.pdf>`_
|
||||
|
||||
`Lien vers fig/triangleRectABC.pdf <fig/triangleRectABC.pdf>`_
|
||||
BIN
3e/Geometrie/Trigo/intro_trigo/fig/triangleABC.pdf
Normal file
BIN
3e/Geometrie/Trigo/intro_trigo/fig/triangleABC.pdf
Normal file
Binary file not shown.
157
3e/Geometrie/Trigo/intro_trigo/fig/triangleABC.svg
Normal file
157
3e/Geometrie/Trigo/intro_trigo/fig/triangleABC.svg
Normal file
@@ -0,0 +1,157 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="triangleABC.svg">
|
||||
<defs
|
||||
id="defs4" />
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.80366138"
|
||||
inkscape:cx="526.18109"
|
||||
inkscape:cy="372.04724"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(0,-308.2677)">
|
||||
<g
|
||||
id="g4173"
|
||||
transform="matrix(-0.69208462,1.3874415,-1.3874415,-0.69208462,1821.4648,791.85122)">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path2985"
|
||||
d="m 258.10123,496.69705 0,485.71433 294.28571,0 z"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="961.14825"
|
||||
x="258.10123"
|
||||
height="21.263077"
|
||||
width="21.263077"
|
||||
id="rect3811"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<g
|
||||
id="g3909">
|
||||
<path
|
||||
sodipodi:type="arc"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path3813"
|
||||
sodipodi:cx="661.27814"
|
||||
sodipodi:cy="614.29559"
|
||||
sodipodi:rx="15.25239"
|
||||
sodipodi:ry="15.25239"
|
||||
d="m 646.02575,614.29559 c 0,-4.50879 1.99489,-8.78654 5.44899,-11.68455"
|
||||
transform="matrix(2.7958868,0,0,2.7958868,-1289.0338,-735.4114)"
|
||||
sodipodi:start="3.1415927"
|
||||
sodipodi:end="4.0143128"
|
||||
sodipodi:open="true" />
|
||||
<path
|
||||
sodipodi:type="arc"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path3813-3"
|
||||
sodipodi:cx="661.27814"
|
||||
sodipodi:cy="614.29559"
|
||||
sodipodi:rx="15.25239"
|
||||
sodipodi:ry="15.25239"
|
||||
d="m 646.07823,615.55974 c -0.46744,-5.62034 2.20465,-11.03991 6.94763,-14.09128"
|
||||
transform="matrix(2.7958868,0,0,2.7958868,-1298.4652,-739.71747)"
|
||||
sodipodi:start="3.0586154"
|
||||
sodipodi:end="4.1407061"
|
||||
sodipodi:open="true" />
|
||||
</g>
|
||||
</g>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:55.81712723px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="991.2077"
|
||||
y="800.80634"
|
||||
id="text4180"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="matrix(0.99992837,0.01196908,-0.01196908,0.99992837,0,0)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4182"
|
||||
x="991.2077"
|
||||
y="800.80634">A</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:55.81712723px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="276.50998"
|
||||
y="458.11118"
|
||||
id="text4184"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="matrix(0.99994352,-0.01062789,0.01062789,0.99994352,0,0)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4186"
|
||||
x="276.50998"
|
||||
y="458.11118">B</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:55.81712723px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="-39.794636"
|
||||
y="944.56842"
|
||||
id="text4188"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="matrix(0.99600213,-0.08932949,0.08932949,0.99600213,0,0)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4190"
|
||||
x="-39.794636"
|
||||
y="944.56842">C</tspan></text>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0"
|
||||
d="m 166.73689,820.92143 139.36218,0"
|
||||
id="path4342"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:5,5;stroke-dashoffset:0"
|
||||
d="m 612.53902,532.24263 336.52492,0"
|
||||
id="path4342-9"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:5, 5;stroke-dashoffset:0"
|
||||
d="m 346.87987,932.90892 336.52492,0"
|
||||
id="path4342-9-7"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:5, 5;stroke-dashoffset:0"
|
||||
d="m 17.139008,635.51995 336.524912,0"
|
||||
id="path4342-9-75"
|
||||
inkscape:connector-curvature="0" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 6.5 KiB |
BIN
3e/Geometrie/Trigo/intro_trigo/fig/triangles.pdf
Normal file
BIN
3e/Geometrie/Trigo/intro_trigo/fig/triangles.pdf
Normal file
Binary file not shown.
454
3e/Geometrie/Trigo/intro_trigo/fig/triangles.svg
Normal file
454
3e/Geometrie/Trigo/intro_trigo/fig/triangles.svg
Normal file
@@ -0,0 +1,454 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="Nouveau document 1">
|
||||
<defs
|
||||
id="defs4" />
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.80366138"
|
||||
inkscape:cx="526.18109"
|
||||
inkscape:cy="372.04724"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(0,-308.2677)">
|
||||
<g
|
||||
id="g4173"
|
||||
transform="translate(-196.60021,42.306375)">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path2985"
|
||||
d="m 258.10123,496.69705 0,485.71433 294.28571,0 z"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="961.14825"
|
||||
x="258.10123"
|
||||
height="21.263077"
|
||||
width="21.263077"
|
||||
id="rect3811"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<g
|
||||
id="g3909">
|
||||
<path
|
||||
sodipodi:type="arc"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path3813"
|
||||
sodipodi:cx="661.27814"
|
||||
sodipodi:cy="614.29559"
|
||||
sodipodi:rx="15.25239"
|
||||
sodipodi:ry="15.25239"
|
||||
d="m 646.02575,614.29559 c 0,-4.50879 1.99489,-8.78654 5.44899,-11.68455"
|
||||
transform="matrix(2.7958868,0,0,2.7958868,-1289.0338,-735.4114)"
|
||||
sodipodi:start="3.1415927"
|
||||
sodipodi:end="4.0143128"
|
||||
sodipodi:open="true" />
|
||||
<path
|
||||
sodipodi:type="arc"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path3813-3"
|
||||
sodipodi:cx="661.27814"
|
||||
sodipodi:cy="614.29559"
|
||||
sodipodi:rx="15.25239"
|
||||
sodipodi:ry="15.25239"
|
||||
d="m 646.07823,615.55974 c -0.46744,-5.62034 2.20465,-11.03991 6.94763,-14.09128"
|
||||
transform="matrix(2.7958868,0,0,2.7958868,-1298.4652,-739.71747)"
|
||||
sodipodi:start="3.0586154"
|
||||
sodipodi:end="4.1407061"
|
||||
sodipodi:open="true" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
id="g4031"
|
||||
transform="matrix(-0.90668926,0.30357224,0.30357224,0.90668926,925.18116,-300.13374)">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path2985-2"
|
||||
d="m 643.83648,752.67992 0,308.17208 295.09519,0 z"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="1039.5889"
|
||||
x="643.83649"
|
||||
height="21.263077"
|
||||
width="21.263077"
|
||||
id="rect3811-3"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<g
|
||||
id="g3909-4"
|
||||
transform="translate(370.01142,77.60659)"
|
||||
style="stroke-width:4;stroke-miterlimit:4;stroke-dasharray:none">
|
||||
<path
|
||||
sodipodi:type="arc"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path3813-5"
|
||||
sodipodi:cx="661.27814"
|
||||
sodipodi:cy="614.29559"
|
||||
sodipodi:rx="15.25239"
|
||||
sodipodi:ry="15.25239"
|
||||
d="m 646.02575,614.29559 c 0,-4.50879 1.99489,-8.78654 5.44899,-11.68455"
|
||||
transform="matrix(2.7958868,0,0,2.7958868,-1289.0338,-735.4114)"
|
||||
sodipodi:start="3.1415927"
|
||||
sodipodi:end="4.0143128"
|
||||
sodipodi:open="true" />
|
||||
<path
|
||||
sodipodi:type="arc"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path3813-3-1"
|
||||
sodipodi:cx="661.27814"
|
||||
sodipodi:cy="614.29559"
|
||||
sodipodi:rx="15.25239"
|
||||
sodipodi:ry="15.25239"
|
||||
d="m 646.07823,615.55974 c -0.46744,-5.62034 2.20465,-11.03991 6.94763,-14.09128"
|
||||
transform="matrix(2.7958868,0,0,2.7958868,-1298.4652,-739.71747)"
|
||||
sodipodi:start="3.0586154"
|
||||
sodipodi:end="4.1407061"
|
||||
sodipodi:open="true" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
id="g4024"
|
||||
transform="matrix(-0.58317067,0.81234966,-0.81234966,-0.58317067,1737.0307,164.5566)">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path2985-8"
|
||||
d="m 801.9187,358.72328 0,486.40087 201.6494,0 z"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="823.51782"
|
||||
x="802.26196"
|
||||
height="21.263077"
|
||||
width="21.263077"
|
||||
id="rect3811-1"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<g
|
||||
id="g3909-2"
|
||||
transform="translate(456.53705,-139.83917)">
|
||||
<path
|
||||
sodipodi:type="arc"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path3813-2"
|
||||
sodipodi:cx="661.27814"
|
||||
sodipodi:cy="614.29559"
|
||||
sodipodi:rx="15.25239"
|
||||
sodipodi:ry="15.25239"
|
||||
d="m 646.02575,614.29559 c 0,-4.50879 1.99489,-8.78654 5.44899,-11.68455"
|
||||
transform="matrix(2.7958868,0,0,2.7958868,-1289.0338,-735.4114)"
|
||||
sodipodi:start="3.1415927"
|
||||
sodipodi:end="4.0143128"
|
||||
sodipodi:open="true" />
|
||||
<path
|
||||
sodipodi:type="arc"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path3813-3-4"
|
||||
sodipodi:cx="661.27814"
|
||||
sodipodi:cy="614.29559"
|
||||
sodipodi:rx="15.25239"
|
||||
sodipodi:ry="15.25239"
|
||||
d="m 646.07823,615.55974 c -0.46744,-5.62034 2.20465,-11.03991 6.94763,-14.09128"
|
||||
transform="matrix(2.7958868,0,0,2.7958868,-1298.4652,-739.71747)"
|
||||
sodipodi:start="3.0586154"
|
||||
sodipodi:end="4.1407061"
|
||||
sodipodi:open="true" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
id="g4098"
|
||||
transform="matrix(0.79927972,-0.25692873,-0.25692873,-0.79927972,534.72503,1488.9845)">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path2985-0"
|
||||
d="m 474.94032,402.54782 0,380.08721 350.41827,0 z"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="761.30255"
|
||||
x="475.00974"
|
||||
height="21.263077"
|
||||
width="21.263077"
|
||||
id="rect3811-8"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<g
|
||||
id="g3909-6"
|
||||
transform="translate(257.60821,-200.81013)">
|
||||
<path
|
||||
sodipodi:type="arc"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path3813-34"
|
||||
sodipodi:cx="661.27814"
|
||||
sodipodi:cy="614.29559"
|
||||
sodipodi:rx="15.25239"
|
||||
sodipodi:ry="15.25239"
|
||||
d="m 646.02575,614.29559 c 0,-4.50879 1.99489,-8.78654 5.44899,-11.68455"
|
||||
transform="matrix(2.7958868,0,0,2.7958868,-1289.0338,-735.4114)"
|
||||
sodipodi:start="3.1415927"
|
||||
sodipodi:end="4.0143128"
|
||||
sodipodi:open="true" />
|
||||
<path
|
||||
sodipodi:type="arc"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path3813-3-2"
|
||||
sodipodi:cx="661.27814"
|
||||
sodipodi:cy="614.29559"
|
||||
sodipodi:rx="15.25239"
|
||||
sodipodi:ry="15.25239"
|
||||
d="m 646.07823,615.55974 c -0.46744,-5.62034 2.20465,-11.03991 6.94763,-14.09128"
|
||||
transform="matrix(2.7958868,0,0,2.7958868,-1298.4652,-739.71747)"
|
||||
sodipodi:start="3.0586154"
|
||||
sodipodi:end="4.1407061"
|
||||
sodipodi:open="true" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
id="g4167"
|
||||
transform="matrix(0.92394406,0.38252761,-0.38252761,0.92394406,-285.67593,-228.52696)">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path2985-4"
|
||||
d="m 625.20837,361.33916 0,130.51849 296.20545,0 z"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="470.59457"
|
||||
x="625.20837"
|
||||
height="21.263077"
|
||||
width="21.263077"
|
||||
id="rect3811-7"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
sodipodi:open="true"
|
||||
sodipodi:end="3.9532095"
|
||||
sodipodi:start="3.1415927"
|
||||
transform="matrix(2.7958868,0,0,2.7958868,-971.69894,-1226.1446)"
|
||||
d="m 646.02575,614.29559 c 0,-4.18394 1.71873,-8.18418 4.75376,-11.0641"
|
||||
sodipodi:ry="15.25239"
|
||||
sodipodi:rx="15.25239"
|
||||
sodipodi:cy="614.29559"
|
||||
sodipodi:cx="661.27814"
|
||||
id="path3813-4"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
sodipodi:type="arc" />
|
||||
<path
|
||||
sodipodi:open="true"
|
||||
sodipodi:end="3.9594421"
|
||||
sodipodi:start="3.0586154"
|
||||
transform="matrix(2.7958868,0,0,2.7958868,-981.13034,-1230.4507)"
|
||||
d="m 646.07823,615.55974 c -0.38615,-4.64292 1.37092,-9.20771 4.77045,-12.39346"
|
||||
sodipodi:ry="15.25239"
|
||||
sodipodi:rx="15.25239"
|
||||
sodipodi:cy="614.29559"
|
||||
sodipodi:cx="661.27814"
|
||||
id="path3813-3-3"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.43067312;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
sodipodi:type="arc" />
|
||||
</g>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="29.863323"
|
||||
y="529.75403"
|
||||
id="text4180"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4182"
|
||||
x="29.863323"
|
||||
y="529.75403">A</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="23.641798"
|
||||
y="1036.1863"
|
||||
id="text4184"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4186"
|
||||
x="23.641798"
|
||||
y="1036.1863">B</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="374.53586"
|
||||
y="725.42993"
|
||||
id="text4188"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4190"
|
||||
x="374.53586"
|
||||
y="725.42993">C</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="64.703865"
|
||||
y="163.00398"
|
||||
id="text4192"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4194"
|
||||
x="64.703865"
|
||||
y="163.00398">D</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="171.71411"
|
||||
y="343.10825"
|
||||
id="text4196"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4198"
|
||||
x="171.71411"
|
||||
y="343.10825">E</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="380.75735"
|
||||
y="591.96924"
|
||||
id="text4200"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4202"
|
||||
x="380.75735"
|
||||
y="591.96924">F</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="521.36383"
|
||||
y="341.86395"
|
||||
id="text4204"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4206"
|
||||
x="521.36383"
|
||||
y="341.86395">G</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="433.01819"
|
||||
y="197.84451"
|
||||
id="text4208"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4210"
|
||||
x="433.01819"
|
||||
y="197.84451">H</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="997.93274"
|
||||
y="298.63324"
|
||||
id="text4212"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4214"
|
||||
x="997.93274"
|
||||
y="298.63324">I</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="1010.3758"
|
||||
y="359.60419"
|
||||
id="text4216"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4218"
|
||||
x="1010.3758"
|
||||
y="359.60419">J</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="836.17303"
|
||||
y="1042.4077"
|
||||
id="text4220"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4222"
|
||||
x="836.17303"
|
||||
y="1042.4077">K</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="701.78809"
|
||||
y="413.10931"
|
||||
id="text4224"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4226"
|
||||
x="701.78809"
|
||||
y="413.10931">L</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="586.06775"
|
||||
y="268.7699"
|
||||
id="text4228"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4230"
|
||||
x="586.06775"
|
||||
y="268.7699">M</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="673.16913"
|
||||
y="878.15942"
|
||||
id="text4232"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4234"
|
||||
x="673.16913"
|
||||
y="878.15942">N</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="364.58142"
|
||||
y="932.90887"
|
||||
id="text4236"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4238"
|
||||
x="364.58142"
|
||||
y="932.90887">P</tspan></text>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 20 KiB |
19
3e/Geometrie/Trigo/intro_trigo/index.rst
Normal file
19
3e/Geometrie/Trigo/intro_trigo/index.rst
Normal file
@@ -0,0 +1,19 @@
|
||||
Notes sur une activité d'introduction aux formules trigo
|
||||
########################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Geometrie, Exo
|
||||
:category: 3e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers intro_trigo.pdf <intro_trigo.pdf>`_
|
||||
|
||||
`Lien vers intro_trigo.tex <intro_trigo.tex>`_
|
||||
|
||||
`Lien vers fig/triangles.pdf <fig/triangles.pdf>`_
|
||||
|
||||
`Lien vers fig/triangleABC.pdf <fig/triangleABC.pdf>`_
|
||||
BIN
3e/Geometrie/Trigo/intro_trigo/intro_trigo.pdf
Normal file
BIN
3e/Geometrie/Trigo/intro_trigo/intro_trigo.pdf
Normal file
Binary file not shown.
63
3e/Geometrie/Trigo/intro_trigo/intro_trigo.tex
Normal file
63
3e/Geometrie/Trigo/intro_trigo/intro_trigo.tex
Normal file
@@ -0,0 +1,63 @@
|
||||
\documentclass[a4paper,10pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classCours}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{Introduction à la trigonométrie}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\troisB}
|
||||
\date{24 mars 2014}
|
||||
|
||||
%\fancyhead[L]{<++classes++> : \Thetitle}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
\section{Nom des cotés et des angles}
|
||||
\begin{minipage}[b]{0.5\textwidth}
|
||||
Completer la figure suivante avec
|
||||
\begin{itemize}
|
||||
\item Le nom de l'ange
|
||||
\item Hypoténuse
|
||||
\item Côté opposé
|
||||
\item Côté adjacent
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
\begin{minipage}[c]{0.5\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/triangleABC}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
|
||||
\section{Longeurs et angles}
|
||||
Compléter le tableau suivant en fonction des triangles.
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{|c|*{6}{c|}}
|
||||
\hline
|
||||
Triangle & Hypoténuse & coté adjacent & coté opposé & angle & $\frac{\mbox{coté adjacent}}{\mbox{Hypoténuse}}$ & $\frac{\mbox{coté opposé}}{\mbox{Hypoténuse}}$ \\
|
||||
\hline
|
||||
ABC & ...... = ...... & ...... = ...... & ...... = ...... & ...... = ...... & $\frac{......}{......} = ......$ & $\frac{......}{......} = ......$ \\
|
||||
\hline
|
||||
DEF & ...... = ...... & ...... = ...... & ...... = ...... & ...... = ...... & $\frac{......}{......} = ......$ & $\frac{......}{......} = ......$ \\
|
||||
\hline
|
||||
GHI & ...... = ...... & ...... = ...... & ...... = ...... & ...... = ...... & $\frac{......}{......} = ......$ & $\frac{......}{......} = ......$ \\
|
||||
\hline
|
||||
JKL & ...... = ...... & ...... = ...... & ...... = ...... & ...... = ...... & $\frac{......}{......} = ......$ & $\frac{......}{......} = ......$ \\
|
||||
\hline
|
||||
MNP & ...... = ...... & ...... = ...... & ...... = ...... & ...... = ...... & $\frac{......}{......} = ......$ & $\frac{......}{......} = ......$ \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.45]{./fig/triangles}
|
||||
\end{center}
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
Reference in New Issue
Block a user