Import work from year 2013-2014
This commit is contained in:
89
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt.tex
Normal file
89
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt.tex
Normal file
@@ -0,0 +1,89 @@
|
||||
\documentclass[a4paper,10pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classDS}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{3}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\quatreC}
|
||||
\date{13 janvier 2014}
|
||||
\duree{1 heure}
|
||||
\sujet{%{{infos.subj%}}}
|
||||
% DS DSCorr DM DMCorr Corr
|
||||
\typedoc{DS}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
Le barème est donné à titre indicatif, il pourra être modifié.
|
||||
|
||||
|
||||
|
||||
\begin{Exo}[4]
|
||||
Dire si les triangles suivants sont rectangles. S'ils sont rectangles, préciser quel est l'angle droit et quel est l'hypoténuse.
|
||||
\begin{enumerate}
|
||||
\item Le triangle $ABC$ dessiné ci-dessous
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.3]{./fig/triangle%{{infos.subj%}}}
|
||||
\end{center}
|
||||
\item Le triangle $EFG$ tel que $EF = 9m$, $FG = 40m$ et $GE = 41m$.
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[5]
|
||||
Calculer sans utiliser de nombres à virgule,les opérations suivantes:
|
||||
\begin{eqnarray*}
|
||||
A & = & %{{ exo.add_frac1() %}} \\
|
||||
B & = & %{{ exo.add_frac3() %}} \\
|
||||
C & = & %{{ exo.mult_frac1() %}} \\
|
||||
D & = & %{{ exo.mult_frac2() %}}
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[5]
|
||||
Voici la recette du cocktail Apple Fizz pour 3 personnes
|
||||
\begin{itemize}
|
||||
\item 3 cuillères à café de sucre vanillé
|
||||
\item $\frac{3}{50}$L de jus de citron
|
||||
\item $\frac{1}{4}$L de jus de pomme.
|
||||
\item 2 cuillères à café de cannelle en poudre
|
||||
\item 3 tranches de pomme
|
||||
\end{itemize}
|
||||
Répondre aux questions suivantes en donnant le résultat sous forme de \textbf{fraction} en explicitant les calculs.
|
||||
\begin{enumerate}
|
||||
\item Quelle est la quantité d'éléments liquides dans ce cocktail?
|
||||
\item Quelle quantité de jus de citron faut-il pour faire ce cocktail pour 15 personnes?
|
||||
\item Quelle quantité de jus de pomme faut-il pour faire ce cocktail pour 2 personnes?
|
||||
\item On décide de personnaliser un peu la recette en ajoutant $\frac{4}{15}$ L de jus de poire à la recette. Quelle est la quantité d'éléments liquides dans cette nouvelle recette?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[2]
|
||||
Évaluer les expressions suivantes:
|
||||
\begin{eqnarray*}
|
||||
%{{ exo.exp1(letter = "A")%}} \\
|
||||
%{{ exo.exp2(letter = "B") %}}
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\pagebreak
|
||||
|
||||
\begin{Exo}
|
||||
\exo{Bonus}
|
||||
On crée des motifs de la façon suivante:
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.3]{./fig/carre.pdf}
|
||||
\end{center}
|
||||
\begin{enumerate}
|
||||
\item Dessiner le motif 4 et 5. Combien y a-t-il de petits carrés sur chacune de ces figures?
|
||||
\item Combien de petits carrés y a-t-il dans le motif $n$?
|
||||
\item Combien de petits carrés y a-t-il dans le motif 10 000?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_1.pdf
Normal file
BIN
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_1.pdf
Normal file
Binary file not shown.
88
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_1.tex
Normal file
88
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_1.tex
Normal file
@@ -0,0 +1,88 @@
|
||||
\documentclass[a4paper,10pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classDS}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{3}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\quatreC}
|
||||
\date{13 janvier 2014}
|
||||
\duree{1 heure}
|
||||
\sujet{1}
|
||||
% DS DSCorr DM DMCorr Corr
|
||||
\typedoc{DS}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
Le barème est donné à titre indicatif, il pourra être modifié.
|
||||
|
||||
|
||||
|
||||
\begin{Exo}[4]
|
||||
Dire si les triangles suivants sont rectangles. S'ils sont rectangles, préciser quel est l'angle droit et quel est l'hypoténuse.
|
||||
\begin{enumerate}
|
||||
\item Le triangle $ABC$ dessiné ci-dessous
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.3]{./fig/triangle1}
|
||||
\end{center}
|
||||
\item Le triangle $EFG$ tel que $EF = 9m$, $FG = 40m$ et $GE = 41m$.
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[5]
|
||||
Calculer sans utiliser de nombres à virgule,les opérations suivantes:
|
||||
\begin{eqnarray*}
|
||||
A & = & \frac{9}{10}-\frac{-13}{10} \\
|
||||
B & = & -\frac{11}{5}-\frac{-2}{6} \\
|
||||
C & = & 10 \times \frac{-1}{13} \\
|
||||
D & = & -9 \times \frac{-2}{11} + \frac{1}{11}
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[5]
|
||||
Voici la recette du cocktail Apple Fizz pour 3 personnes
|
||||
\begin{itemize}
|
||||
\item 3 cuillères à café de sucre vanillé
|
||||
\item $\frac{3}{50}$L de jus de citron
|
||||
\item $\frac{1}{4}$L de jus de pomme.
|
||||
\item 2 cuillères à café de cannelle en poudre
|
||||
\item 3 tranches de pomme
|
||||
\end{itemize}
|
||||
Répondre aux questions suivantes en donnant le résultat sous forme de \textbf{fraction} en explicitant les calculs.
|
||||
\begin{enumerate}
|
||||
\item Quelle est la quantité d'éléments liquides dans ce cocktail?
|
||||
\item Quelle quantité de jus de citron faut-il pour faire ce cocktail pour 15 personnes?
|
||||
\item Quelle quantité de jus de pomme faut-il pour faire ce cocktail pour 2 personnes?
|
||||
\item On décide de personnaliser un peu la recette en ajoutant $\frac{4}{15}$ L de jus de poire à la recette. Quelle est la quantité d'éléments liquides dans cette nouvelle recette?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[2]
|
||||
Évaluer les expressions suivantes:
|
||||
\begin{eqnarray*}
|
||||
A = -7x + 6 & \mbox{avec} & x = 9 \\
|
||||
B = -9x(8x + 9) & \mbox{avec} & x = 5
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\pagebreak
|
||||
|
||||
\begin{Exo}
|
||||
\exo{Bonus}
|
||||
On crée des motifs de la façon suivante:
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.3]{./fig/carre.pdf}
|
||||
\end{center}
|
||||
\begin{enumerate}
|
||||
\item Dessiner le motif 4 et 5. Combien y a-t-il de petits carrés sur chacune de ces figures?
|
||||
\item Combien de petits carrés y a-t-il dans le motif $n$?
|
||||
\item Combien de petits carrés y a-t-il dans le motif 10 000?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
BIN
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_1_.pdf
Normal file
BIN
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_1_.pdf
Normal file
Binary file not shown.
88
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_1_.tex
Normal file
88
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_1_.tex
Normal file
@@ -0,0 +1,88 @@
|
||||
\documentclass[a4paper,10pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classDS}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{3}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\quatreC}
|
||||
\date{13 janvier 2014}
|
||||
\duree{1 heure}
|
||||
\sujet{1}
|
||||
% DS DSCorr DM DMCorr Corr
|
||||
\typedoc{DS}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
Le barème est donné à titre indicatif, il pourra être modifié. Des points sont réservés à la présentation et à la rédaction.
|
||||
|
||||
|
||||
|
||||
\begin{Exo}[4]
|
||||
Dire si les triangles suivants sont rectangles. S'ils sont rectangles, préciser quel est l'angle droit et quel est l'hypoténuse.
|
||||
\begin{enumerate}
|
||||
\item Le triangle $ABC$ dessiné ci-dessous
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.3]{./fig/triangle1}
|
||||
\end{center}
|
||||
\item Le triangle $EFG$ tel que $EF = 0,9m$, $FG = 4m$ et $GE = 4,1m$.
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[5]
|
||||
Calculer sans utiliser de nombres à virgule,les opérations suivantes:
|
||||
\begin{eqnarray*}
|
||||
A & = & \frac{9}{10}-\frac{-13}{10} \\
|
||||
B & = & -\frac{11}{5}-\frac{-2}{6} \\
|
||||
C & = & 10 \times \frac{-1}{13} \\
|
||||
D & = & -9 \times \frac{-2}{11} + \frac{1}{11}
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[5]
|
||||
Voici la recette du cocktail Apple Fizz pour 3 personnes
|
||||
\begin{itemize}
|
||||
\item 3 cuillères à café de sucre vanillé
|
||||
\item $\frac{3}{50}$L de jus de citron
|
||||
\item $\frac{1}{4}$L de jus de pomme.
|
||||
\item 2 cuillères à café de cannelle en poudre
|
||||
\item 3 tranches de pomme
|
||||
\end{itemize}
|
||||
Répondre aux questions suivantes en donnant le résultat sous forme de \textbf{fraction} en explicitant les calculs.
|
||||
\begin{enumerate}
|
||||
\item Quelle est la quantité d'éléments liquides dans ce cocktail?
|
||||
\item Quelle quantité de jus de citron faut-il pour faire ce cocktail pour 15 personnes?
|
||||
\item Quelle quantité de jus de pomme faut-il pour faire ce cocktail pour 2 personnes?
|
||||
\item On décide de personnaliser un peu la recette en ajoutant $\frac{4}{15}$ L de jus de poire à la recette. Quelle est la quantité d'éléments liquides dans cette nouvelle recette?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[3]
|
||||
Évaluer les expressions suivantes:
|
||||
\begin{eqnarray*}
|
||||
A = -7x^2 + 2x + 6 & \mbox{avec} & x = 9 \\
|
||||
B = -9x(8x + 9) & \mbox{avec} & x = 5
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\pagebreak
|
||||
|
||||
\begin{Exo}
|
||||
\exo{Bonus}
|
||||
On crée des motifs de la façon suivante:
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.3]{./fig/carre.pdf}
|
||||
\end{center}
|
||||
\begin{enumerate}
|
||||
\item Dessiner le motif 4 et 5. Combien y a-t-il de petits carrés sur chacune de ces figures?
|
||||
\item Combien de petits carrés y a-t-il dans le motif $n$?
|
||||
\item Combien de petits carrés y a-t-il dans le motif 10 000?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
175
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_1_corr.tex
Normal file
175
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_1_corr.tex
Normal file
@@ -0,0 +1,175 @@
|
||||
\documentclass[a4paper,12pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classDS}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{3}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\quatreC}
|
||||
\date{13 janvier 2014}
|
||||
\duree{1 heure}
|
||||
\sujet{1}
|
||||
% DS DSCorr DM DMCorr Corr
|
||||
\typedoc{DSCorr}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
|
||||
\begin{Exo}[4]
|
||||
\begin{enumerate}
|
||||
\item Vérifions si le triangle $ABC$ est rectangle:
|
||||
\begin{eqnarray*}
|
||||
AB^2 & = & 15\times15 = 225 \\
|
||||
AC^2 & = & 17\times17 = 289 \\
|
||||
BC^2 & = & 7 \times 7 = 49
|
||||
\end{eqnarray*}
|
||||
On ajoute le carré des longueurs des deux plus petits côtés: $AB^2 + BC^2 = 225 + 49 = 274 \neq 289 = AC^2$. Donc d'après le théorème de Pythagore, \textbf{le triangle $ABC$ n'est pas rectangle.}
|
||||
|
||||
\item Vérifions si le triangle $EFG$ est rectangle:
|
||||
\begin{eqnarray*}
|
||||
EF^2 & = & 0.9\times0.9 = 0.81 \\
|
||||
FG^2 & = & 4\times4 = 16\\
|
||||
GE^2 & = & 4.1 \times 4.1 = 16.81
|
||||
\end{eqnarray*}
|
||||
On ajoute le carré des longueurs des deux plus petits côtés: $EF^2 + FG^2 = 0.81 + 16 = 16.81 = GE^2$. Donc d'après le théorème de Pythagore, le triangle $EFG$ est rectangle en $F$. Et l'hypoténuse est $[GE]$.
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[5]
|
||||
Calculer sans utiliser de nombres à virgule,les opérations suivantes:
|
||||
|
||||
\begin{minipage}[h]{0.5\textwidth}
|
||||
\begin{eqnarray*}
|
||||
A & = & \frac{9}{10}-\frac{-13}{10} \\
|
||||
A & = & \frac{ 9 - (-13) }{ 10 } \\
|
||||
A & = & \frac{ 9 + 13 }{ 10 } \\
|
||||
A & = & \frac{ 22 }{ 10 } \\
|
||||
A & = & \frac{ 11 \times 2 }{ 5 \times 2 } \\
|
||||
A & = & \frac{ 11 }{ 5 }
|
||||
\end{eqnarray*}
|
||||
\end{minipage}
|
||||
\begin{minipage}[h]{0.5\textwidth}
|
||||
\begin{eqnarray*}
|
||||
B & = & -\frac{11}{5}-\frac{-2}{6} \\
|
||||
B & = & \frac{-11 \times 6}{5 \times 6} - \frac{-2 \times 5}{6 \times 5} \\
|
||||
B & = & \frac{-66}{30} - \frac{-10}{30} \\
|
||||
B & = & \frac{-66 - (-10)}{30} \\
|
||||
B & = & \frac{-56}{30} \\
|
||||
B & = & \frac{-28 \times 2}{15 \times 2} \\
|
||||
B & = & \frac{-28}{15}
|
||||
\end{eqnarray*}
|
||||
\end{minipage}
|
||||
|
||||
\begin{minipage}[h]{0.5\textwidth}
|
||||
\begin{eqnarray*}
|
||||
C & = & 10 \times \frac{-1}{13} \\
|
||||
C & = & \frac{ 10 \times ( -10 ) }{ 13 } \\
|
||||
C & = & \frac{ -100 }{ 13 }
|
||||
\end{eqnarray*}
|
||||
\end{minipage}
|
||||
\begin{minipage}[h]{0.5\textwidth}
|
||||
\begin{eqnarray*}
|
||||
D & = & -9 \times \frac{-2}{11} + \frac{1}{11} \\
|
||||
D & = & \frac{ ( -9 ) \times ( -2 ) }{ 11 } + \frac{ 1 }{ 11 } \\
|
||||
D & = & \frac{ 18 }{ 11 } + \frac{ 1 }{ 11 } \\
|
||||
D & = & \frac{ 18 + 1 }{ 11 } \\
|
||||
D & = & \frac{ 19 }{ 11 }
|
||||
\end{eqnarray*}
|
||||
\end{minipage}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[5]
|
||||
\begin{enumerate}
|
||||
\item Quantité d'éléments liquides:
|
||||
\begin{eqnarray*}
|
||||
\frac{3}{50} + \frac{1}{4} & = & \frac{ 3 \times 2 }{ 50 \times 2 } + \frac{ 1 \times 25 }{ 4 \times 25 } \\
|
||||
& = & \frac{ 6 + 25 }{ 100 }\\
|
||||
& = & \frac{ 31 }{ 100 }
|
||||
\end{eqnarray*}
|
||||
Il y a $\frac{31}{100}$L d'éléments liquides.
|
||||
|
||||
\item Comme la recette de ce cocktail est donnée pour 3 personnes, il faut multiplier les quantités par 5 pour en faire pour 15 personnes.
|
||||
\begin{eqnarray*}
|
||||
5 \times \frac{1}{4} & = & \frac{5 \times 1}{4} \\
|
||||
& = & \frac{5}{4} \\
|
||||
\end{eqnarray*}
|
||||
Il faudra donc $\frac{5}{4}$L de jus de pommes.
|
||||
|
||||
\item Comme la recette du cocktail est donnée pour 3 personnes, il faut diviser les quantités par 3 pour en faire pour une personne.
|
||||
\begin{eqnarray*}
|
||||
\frac{3}{50} : 3 & = & \frac{3}{50\times 3} = \frac{1}{50}
|
||||
\end{eqnarray*}
|
||||
Il faudra donc $\frac{1}{50}$L de jus de citron.
|
||||
|
||||
|
||||
\item Maintenant que l'on connait les quantités de jus de citron pour faire le cocktail pour une personne, il suffit de multiplier cette quantité par 2 pour avoir la quantité pour 2 personnes.
|
||||
\begin{eqnarray*}
|
||||
2 \times \frac{1}{50} = \frac{2 \times 1}{50} = \frac{2}{50} = \frac{1}{25}
|
||||
\end{eqnarray*}
|
||||
Il faudra donc $\frac{1}{25}$L de jus de citron.
|
||||
|
||||
\item Quantité d'éléments liquides dans cette nouvelle recette:
|
||||
\begin{eqnarray*}
|
||||
\frac{31}{100} + \frac{4}{15} & = & \frac{ 31 \times 3 }{ 100 \times 3 } + \frac{ 4 \times 20 }{ 15 \times 20 } \\
|
||||
& = &\frac{ 93 + 80 }{ 300 } \\
|
||||
& = &\frac{ 173 }{ 300 }
|
||||
\end{eqnarray*}
|
||||
Dans cette nouvelle recette, il y aura $\frac{173}{300}$L d'éléments liquides.
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[3]
|
||||
\begin{eqnarray*}
|
||||
A = -7x^2 + 2x + 6 & = & -7\times 9^2 + 2 \times 9 + 6 \\
|
||||
A & = & -7 \times 81 + 18 + 6 \\
|
||||
A & = & -567 + 24 \\
|
||||
A & = & - 543
|
||||
\end{eqnarray*}
|
||||
\begin{eqnarray*}
|
||||
B = -9x(8x + 9) & = & -9 \times 5 \times ( 8 \times 5 + 9 ) \\
|
||||
B & = & ( -9 ) \times 5 \times ( 8 \times 5 + 9 ) \\
|
||||
B & = & ( -45 ) \times ( 40 + 9 ) \\
|
||||
B & = & ( -45 ) \times 49 \\
|
||||
B & = & -2205
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
|
||||
\begin{Exo}
|
||||
\exo{Bonus}
|
||||
\begin{enumerate}
|
||||
\item pour compter la fraction de vélos rouges ou noirs, il faut ajouter les fractions correspondant aux deux groupes:
|
||||
\begin{eqnarray*}
|
||||
\frac{4}{11} + \frac{3}{22} & = & \frac{8}{22} + \frac{3}{22} \\
|
||||
& = & \frac{8 + 3}{22} = \frac{11}{22} \\
|
||||
&=& \frac{1}{2}
|
||||
\end{eqnarray*}
|
||||
Donc la moitié des vélos sont soit rouge soit noirs.
|
||||
\item La fraction du reste des vélos est donc elle aussi de $\frac{1}{2}$. Parmi ces derniers, $\frac{5}{11}$ sont des vélos blancs donc en tout la fraction de vélos blancs est de
|
||||
\begin{eqnarray*}
|
||||
\frac{1}{2} \times \frac{5}{11} & = & \frac{1\times5}{2\ties11} = \frac{5}{22}
|
||||
\end{eqnarray*}
|
||||
\item Fractions de vélos soit rouges, soit noirs, soit blancs:
|
||||
\begin{eqnarray*}
|
||||
\frac{11}{22} + \frac{5}{22} & = & \frac{11 + 5}{22} = \frac{16}{22} = \frac{8}{11}
|
||||
\end{eqnarray*}
|
||||
Donc la fraction des vélos ni rouges, ni noirs ni blancs est de
|
||||
\begin{eqnarray*}
|
||||
1 - \frac{8}{11} & = & \frac{11}{11} - \frac{8}{11°\\
|
||||
&=& \frac{11 - 8}{11}\\
|
||||
&=& \frac{3}{11}
|
||||
\end{eqnarray*}
|
||||
Les vélos ni rouges ni noirs ni blancs représentent $\frac{3}{11}$.
|
||||
|
||||
|
||||
|
||||
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
BIN
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_2.pdf
Normal file
BIN
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_2.pdf
Normal file
Binary file not shown.
88
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_2.tex
Normal file
88
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_2.tex
Normal file
@@ -0,0 +1,88 @@
|
||||
\documentclass[a4paper,10pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classDS}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{3}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\quatreC}
|
||||
\date{13 janvier 2014}
|
||||
\duree{1 heure}
|
||||
\sujet{2}
|
||||
% DS DSCorr DM DMCorr Corr
|
||||
\typedoc{DS}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
Le barème est donné à titre indicatif, il pourra être modifié.
|
||||
|
||||
|
||||
|
||||
\begin{Exo}[4]
|
||||
Dire si les triangles suivants sont rectangles. S'ils sont rectangles, préciser quel est l'angle droit et quel est l'hypoténuse.
|
||||
\begin{enumerate}
|
||||
\item Le triangle $ABC$ dessiné ci-dessous
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.3]{./fig/triangle2}
|
||||
\end{center}
|
||||
\item Le triangle $EFG$ tel que $EF = 9m$, $FG = 40m$ et $GE = 41m$.
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[5]
|
||||
Calculer sans utiliser de nombres à virgule,les opérations suivantes:
|
||||
\begin{eqnarray*}
|
||||
A & = & \frac{-17}{2}+\frac{-15}{2} \\
|
||||
B & = & \frac{17}{6}+\frac{-19}{5} \\
|
||||
C & = & 9 \times \frac{-1}{11} \\
|
||||
D & = & 10 \times \frac{1}{3} + \frac{10}{3}
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[5]
|
||||
Voici la recette du cocktail Apple Fizz pour 3 personnes
|
||||
\begin{itemize}
|
||||
\item 3 cuillères à café de sucre vanillé
|
||||
\item $\frac{3}{50}$L de jus de citron
|
||||
\item $\frac{1}{4}$L de jus de pomme.
|
||||
\item 2 cuillères à café de cannelle en poudre
|
||||
\item 3 tranches de pomme
|
||||
\end{itemize}
|
||||
Répondre aux questions suivantes en donnant le résultat sous forme de \textbf{fraction} en explicitant les calculs.
|
||||
\begin{enumerate}
|
||||
\item Quelle est la quantité d'éléments liquides dans ce cocktail?
|
||||
\item Quelle quantité de jus de citron faut-il pour faire ce cocktail pour 15 personnes?
|
||||
\item Quelle quantité de jus de pomme faut-il pour faire ce cocktail pour 2 personnes?
|
||||
\item On décide de personnaliser un peu la recette en ajoutant $\frac{4}{15}$ L de jus de poire à la recette. Quelle est la quantité d'éléments liquides dans cette nouvelle recette?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[2]
|
||||
Évaluer les expressions suivantes:
|
||||
\begin{eqnarray*}
|
||||
A = -9x + 2 & \mbox{avec} & x = -4 \\
|
||||
B = 6x(4x + 3) & \mbox{avec} & x = -9
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\pagebreak
|
||||
|
||||
\begin{Exo}
|
||||
\exo{Bonus}
|
||||
On crée des motifs de la façon suivante:
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.3]{./fig/carre.pdf}
|
||||
\end{center}
|
||||
\begin{enumerate}
|
||||
\item Dessiner le motif 4 et 5. Combien y a-t-il de petits carrés sur chacune de ces figures?
|
||||
\item Combien de petits carrés y a-t-il dans le motif $n$?
|
||||
\item Combien de petits carrés y a-t-il dans le motif 10 000?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
BIN
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_2_.pdf
Normal file
BIN
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_2_.pdf
Normal file
Binary file not shown.
88
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_2_.tex
Normal file
88
4e/DS/4eC/01_pyth_frac_litt/01_pyth_frac_litt_2_.tex
Normal file
@@ -0,0 +1,88 @@
|
||||
\documentclass[a4paper,10pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classDS}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{3}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\quatreC}
|
||||
\date{13 janvier 2014}
|
||||
\duree{1 heure}
|
||||
\sujet{2}
|
||||
% DS DSCorr DM DMCorr Corr
|
||||
\typedoc{DS}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
Le barème est donné à titre indicatif, il pourra être modifié. Des points sont réservés à la présentation et à la rédaction.
|
||||
|
||||
|
||||
|
||||
\begin{Exo}[4]
|
||||
Dire si les triangles suivants sont rectangles. S'ils sont rectangles, préciser quel est l'angle droit et quel est l'hypoténuse.
|
||||
\begin{enumerate}
|
||||
\item Le triangle $ABC$ dessiné ci-dessous
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.3]{./fig/triangle2}
|
||||
\end{center}
|
||||
\item Le triangle $EFG$ tel que $EF = 2m$, $FG = 2,1m$ et $GE = 2,8m$.
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[5]
|
||||
Calculer sans utiliser de nombres à virgule,les opérations suivantes:
|
||||
\begin{eqnarray*}
|
||||
A & = & \frac{-17}{2}+\frac{-15}{2} \\
|
||||
B & = & \frac{17}{6}+\frac{-19}{5} \\
|
||||
C & = & 9 \times \frac{-1}{11} \\
|
||||
D & = & 10 \times \frac{1}{3} + \frac{10}{3}
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[5]
|
||||
Voici la recette du cocktail Apple Fizz pour 3 personnes
|
||||
\begin{itemize}
|
||||
\item 3 cuillères à café de sucre vanillé
|
||||
\item $\frac{3}{50}$L de jus de citron
|
||||
\item $\frac{1}{4}$L de jus de pomme.
|
||||
\item 2 cuillères à café de cannelle en poudre
|
||||
\item 3 tranches de pomme
|
||||
\end{itemize}
|
||||
Répondre aux questions suivantes en donnant le résultat sous forme de \textbf{fraction} en explicitant les calculs.
|
||||
\begin{enumerate}
|
||||
\item Quelle est la quantité d'éléments liquides dans ce cocktail?
|
||||
\item Quelle quantité de jus de citron faut-il pour faire ce cocktail pour 15 personnes?
|
||||
\item Quelle quantité de jus de pomme faut-il pour faire ce cocktail pour 2 personnes?
|
||||
\item On décide de personnaliser un peu la recette en ajoutant $\frac{4}{15}$ L de jus de poire à la recette. Quelle est la quantité d'éléments liquides dans cette nouvelle recette?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[3]
|
||||
Évaluer les expressions suivantes:
|
||||
\begin{eqnarray*}
|
||||
A = 9x^2 + 2x + 2 & \mbox{avec} & x = -4 \\
|
||||
B = 6x(4x + 3) & \mbox{avec} & x = -9
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\pagebreak
|
||||
|
||||
\begin{Exo}
|
||||
\exo{Bonus}
|
||||
On crée des motifs de la façon suivante:
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.3]{./fig/carre.pdf}
|
||||
\end{center}
|
||||
\begin{enumerate}
|
||||
\item Dessiner le motif 4 et 5. Combien y a-t-il de petits carrés sur chacune de ces figures?
|
||||
\item Combien de petits carrés y a-t-il dans le motif $n$?
|
||||
\item Combien de petits carrés y a-t-il dans le motif 10 000?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
219
4e/DS/4eC/01_pyth_frac_litt/add_frac.py
Normal file
219
4e/DS/4eC/01_pyth_frac_litt/add_frac.py
Normal file
@@ -0,0 +1,219 @@
|
||||
#!/usr/bin/env python
|
||||
# encoding: utf-8
|
||||
|
||||
from random import randint, random
|
||||
|
||||
|
||||
|
||||
"""Classe which generate randomly fractions sums
|
||||
|
||||
Types of sums
|
||||
|
||||
1 -> b / a + c / a
|
||||
2 -> b / a + c / ka
|
||||
3 -> b / a + e / d
|
||||
4 -> f + b / a or b / a + f
|
||||
|
||||
where:
|
||||
a integer > 2
|
||||
b integer different from 0 (could be coprime with a)
|
||||
c integer different from 0 (could be coprime with a or ka)
|
||||
e integer different from 0 (could be coprime with d)
|
||||
d integer > 2 ( a not divisible by d and d not divisible by a)
|
||||
k integer > 2
|
||||
f integer different from 0
|
||||
|
||||
Signs can be mod
|
||||
|
||||
|
||||
"""
|
||||
|
||||
def a(min_ = 2, max_ = 10):
|
||||
"""Generate randomly a
|
||||
|
||||
:param min_: minimum value for a
|
||||
:param max_: maximum value for a
|
||||
:returns: a value
|
||||
|
||||
"""
|
||||
return randint(min_, max_)
|
||||
|
||||
def k(min_ = 2, max_ = 5):
|
||||
"""Generate randomly k
|
||||
|
||||
:param min_: minimum value for k
|
||||
:param max_: maximum value for k
|
||||
:returns: k value
|
||||
|
||||
"""
|
||||
return randint(min_, max_)
|
||||
|
||||
def b(a_ = 0, min_ = -20, max_ = 20):
|
||||
"""Generate randomly b
|
||||
|
||||
:param a: the value of a if b has to be coprime with a (default 0 which means not necessarily coprime)
|
||||
:param min_: minimum value for b (default -20)
|
||||
:param max_: maximum value for b (default 20)
|
||||
:returns: b value
|
||||
|
||||
"""
|
||||
b_ = 0
|
||||
while b_ == 0 or not coprime:
|
||||
b_ = randint(min_, max_)
|
||||
if a_ == 0:
|
||||
coprime = 1
|
||||
elif b_ != 0:
|
||||
gcd_ = gcd(abs(a_),abs(b_))
|
||||
coprime = (gcd_ == 1)
|
||||
|
||||
return b_
|
||||
|
||||
def c(a_ = 0, k_ = 1, min_ = -20, max_ = 20):
|
||||
"""Generate randomly c
|
||||
|
||||
:param a: the value of a if c has to be coprime with a (default 0 which means not necessarily coprime)
|
||||
:param k: the value of a if c has to be coprime with ak (default 0 which means not necessarily coprime)
|
||||
:param min_: minimum value for c (default -20)
|
||||
:param max_: maximum value for c (default 20)
|
||||
:returns: c value
|
||||
|
||||
"""
|
||||
return b(a_ = a_*k_, min_ = min_, max_ = max_)
|
||||
|
||||
def e(d_ = 0, min_ = -20, max_ = 20):
|
||||
"""Generate randomly e
|
||||
|
||||
:param d: the value of a if e has to be coprime with a (default 0 which means not necessarily coprime)
|
||||
:param min_: minimum value for e (default -20)
|
||||
:param max_: maximum value for e (default 20)
|
||||
:returns: e value
|
||||
|
||||
"""
|
||||
return b(a_ = d_, min_ = min_, max_ = max_)
|
||||
|
||||
def d(a_, min_ = 2, max_ = 10):
|
||||
"""Generate randomly d
|
||||
|
||||
:param a: the value of a
|
||||
:param min_: minimum value for d
|
||||
:param max_: maximum value for d
|
||||
:returns: d value
|
||||
|
||||
"""
|
||||
d_ = randint(min_, max_)
|
||||
div = (not a_ % d_) or (not d_ % a_)
|
||||
while div:
|
||||
d_ = randint(min_, max_)
|
||||
div = (not a_ % d_) or (not d_ % a_)
|
||||
|
||||
return d_
|
||||
|
||||
def f(min_ = -10, max_ = 10):
|
||||
"""Generate randomly f
|
||||
|
||||
:param min_: minimum value for f
|
||||
:param max_: maximum value for f
|
||||
:returns: f value
|
||||
|
||||
"""
|
||||
f_ = randint(min_, max_)
|
||||
while f_ == 0:
|
||||
f_ = randint(min_, max_)
|
||||
|
||||
return f_
|
||||
|
||||
def plusOrMinus(p = 0.5):
|
||||
"""Return plus with prob p and minus otherwise
|
||||
"""
|
||||
pm = random()
|
||||
return "+"*(pm >= p) + "-"*(pm < p)
|
||||
|
||||
def nothingOrMinus(p = 0.5):
|
||||
"""Return nothing with prob p and minus otherwise
|
||||
"""
|
||||
pm = random()
|
||||
return ""*(pm >= p) + "-"*(pm < p)
|
||||
|
||||
def type1():
|
||||
"""@todo: Docstring for type1
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a_ = a()
|
||||
b_ = b(a_=a_)
|
||||
c_ = c(a_=a_)
|
||||
|
||||
return nothingOrMinus() + "\\frac{" + str(b_) + "}{" + str(a_) + "}" + plusOrMinus() + "\\frac{" + str(c_) + "}{" + str(a_) + "}"
|
||||
|
||||
def type2():
|
||||
"""@todo: Docstring for type2
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a_ = a()
|
||||
b_ = b(a_=a_)
|
||||
k_ = k()
|
||||
c_ = c(a_=a_, k_ = k_)
|
||||
|
||||
return nothingOrMinus() + "\\frac{" + str(b_) + "}{" + str(a_) + "}" + plusOrMinus() + "\\frac{" + str(c_) + "}{" + str(k_*a_) + "}"
|
||||
|
||||
def type3():
|
||||
"""@todo: Docstring for type3
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a_ = a()
|
||||
b_ = b(a_=a_)
|
||||
c_ = c(a_=a_)
|
||||
d_ = d(a_)
|
||||
|
||||
return nothingOrMinus() + "\\frac{" + str(b_) + "}{" + str(a_) + "}" + plusOrMinus() + "\\frac{" + str(c_) + "}{" + str(d_) + "}"
|
||||
|
||||
def type4():
|
||||
"""@todo: Docstring for type4
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a_ = a()
|
||||
b_ = b(a_=a_)
|
||||
f_ = f()
|
||||
|
||||
return str(f_) + plusOrMinus() + "\\frac{" + str(b_) + "}{" + str(a_) + "}"
|
||||
|
||||
def gcd(a_, b_):
|
||||
"""Compute gcd(a,b)
|
||||
|
||||
:param a: first number
|
||||
:param b: second number
|
||||
:returns: the gcd
|
||||
|
||||
"""
|
||||
if a_ > b_:
|
||||
c_ = a_ % b_
|
||||
else:
|
||||
c_ = b_ % a_
|
||||
|
||||
if c_ == 0:
|
||||
return min(a_,b_)
|
||||
elif a_ == 1:
|
||||
return b_
|
||||
elif b_ == 1:
|
||||
return a_
|
||||
else:
|
||||
return gcd(min(a_,b_), c_)
|
||||
|
||||
if __name__ == '__main__':
|
||||
# print(a())
|
||||
# print(b())
|
||||
# print(c())
|
||||
# print(d(3))
|
||||
# print(e())
|
||||
# print(f())
|
||||
print(type1())
|
||||
print(type2())
|
||||
print(type3())
|
||||
print(type4())
|
||||
|
||||
# Reglages pour 'vim'
|
||||
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
||||
# cursor: 16 del
|
||||
163
4e/DS/4eC/01_pyth_frac_litt/call_litt.py
Normal file
163
4e/DS/4eC/01_pyth_frac_litt/call_litt.py
Normal file
@@ -0,0 +1,163 @@
|
||||
#!/usr/bin/env python
|
||||
# encoding: utf-8
|
||||
|
||||
from random import randint, uniform
|
||||
from math import sqrt
|
||||
from jinja2 import Template
|
||||
|
||||
"""
|
||||
Generate expression for litteral calculous
|
||||
|
||||
3 types of expression (a, b, c != 0, 1)
|
||||
1 -> ax + b and eval for x != -b / a
|
||||
2 -> ax(bx + c) and eval for x != 0 and x != -c / b
|
||||
3 -> ax^2 + b and eval for x != +-sqrt(b/a) (if a and b have same sign)
|
||||
"""
|
||||
|
||||
def gene_type1(min_ = -10, max_ = 10):
|
||||
"""@todo: Docstring for gene_type1
|
||||
|
||||
:param min_: @todo
|
||||
:param max_: @todo
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a, b = 0, 0
|
||||
while (b in [0]) or (a in [0, 1]):
|
||||
a = randint(min_, max_)
|
||||
b = randint(1, max_)
|
||||
|
||||
return "{}x + {}".format(a,b), [-b/a]
|
||||
|
||||
def gene_type2(min_, max_):
|
||||
"""@todo: Docstring for gene_type2
|
||||
|
||||
:param min_: @todo
|
||||
:param max_: @todo
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a, b, c = 0, 0, 0
|
||||
while (a in [0, 1]) or (b in [0, 1]) or c in [0]:
|
||||
a = randint(min_, max_)
|
||||
b = randint(min_, max_)
|
||||
c = randint(1, max_)
|
||||
|
||||
return "{}x({}x + {})".format(a,b,c), [0, -c/b]
|
||||
|
||||
def gene_type3(min_ = -10, max_ = 10):
|
||||
"""@todo: Docstring for gene_type3
|
||||
|
||||
:param min_: @todo
|
||||
:param max_: @todo
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a, b = 0, 0
|
||||
while (b in [0]) or (a in [0, 1]):
|
||||
a = randint(min_, max_)
|
||||
b = randint(1, max_)
|
||||
|
||||
if a*(-b) > 0:
|
||||
VI = [-sqrt(-b/a), sqrt(-b/a)]
|
||||
else:
|
||||
VI = []
|
||||
|
||||
return "{}x^2 + {}".format(a,b), VI
|
||||
|
||||
def get_goodX(VI, approx = 0, min_ = -10, max_ = 10):
|
||||
"""@todo: Docstring for get_goodX
|
||||
|
||||
:param VI: @todo
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
x = uniform(min_, max_)
|
||||
if approx == 0:
|
||||
x = int(x)
|
||||
else:
|
||||
x = round(x,approx)
|
||||
while x in VI:
|
||||
x = uniform(min_, max_)
|
||||
if approx == 0:
|
||||
x = int(x)
|
||||
else:
|
||||
x = round(x,approx)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
|
||||
def fullExo(min_ = -10 , max_ = 10):
|
||||
"""Generate the whole exo
|
||||
|
||||
:param min_: @todo
|
||||
:param max_: @todo
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
template = Template("""
|
||||
\\begin{equation*}
|
||||
A = {{type1}} \\qquad B = {{type2}} \\qquad C = {{type3}}
|
||||
\\end{equation*}
|
||||
|
||||
Évaluer $A$, $B$ et $C$ pour $x = {{x1}}$ puis $x = {{x2}}$""")
|
||||
|
||||
type1, VI1 = gene_type1(min_, max_)
|
||||
type2, VI2 = gene_type2(min_, max_)
|
||||
type3, VI3 = gene_type3(min_, max_)
|
||||
|
||||
VI = VI1 + VI2 + VI3
|
||||
|
||||
x1, x2 = get_goodX(VI), get_goodX(VI, approx = 1)
|
||||
|
||||
info = {"type1": type1, "type2": type2, "type3": type3, "x1":x1, "x2":x2}
|
||||
|
||||
exo = template.render(**info)
|
||||
|
||||
return exo
|
||||
|
||||
def exp1(min_ = -10, max_ = 10, letter = "A"):
|
||||
"""@todo: Docstring for exp1
|
||||
|
||||
:param min: @todo
|
||||
:param max: @todo
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
exp, VI = gene_type1(min_,max_)
|
||||
x = get_goodX(VI)
|
||||
|
||||
tpl = Template("{{A}} = {{exp}} & \\mbox{avec} & x = {{x}}")
|
||||
|
||||
return tpl.render(A = letter, exp = exp, x = x)
|
||||
|
||||
def exp2(min_ = -10, max_ = 10, letter = "A"):
|
||||
"""@todo: Docstring for exp1
|
||||
|
||||
:param min: @todo
|
||||
:param max: @todo
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
exp, VI = gene_type2(min_,max_)
|
||||
x = get_goodX(VI)
|
||||
|
||||
tpl = Template("{{A}} = {{exp}} & \\mbox{avec} & x = {{x}}")
|
||||
|
||||
return tpl.render(A = letter, exp = exp, x = x)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(fullExo())
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# -----------------------------
|
||||
# Reglages pour 'vim'
|
||||
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
||||
# cursor: 16 del
|
||||
BIN
4e/DS/4eC/01_pyth_frac_litt/fig/carre.pdf
Normal file
BIN
4e/DS/4eC/01_pyth_frac_litt/fig/carre.pdf
Normal file
Binary file not shown.
480
4e/DS/4eC/01_pyth_frac_litt/fig/carre.svg
Normal file
480
4e/DS/4eC/01_pyth_frac_litt/fig/carre.svg
Normal file
@@ -0,0 +1,480 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1790.0562"
|
||||
height="458.86859"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="carre.svg">
|
||||
<defs
|
||||
id="defs4" />
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.39107937"
|
||||
inkscape:cx="812.02997"
|
||||
inkscape:cy="436.97452"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="1"
|
||||
fit-margin-top="10"
|
||||
fit-margin-left="10"
|
||||
fit-margin-right="10"
|
||||
fit-margin-bottom="10" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title />
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(-2.6617935,-400.90067)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-4"
|
||||
width="87.994865"
|
||||
height="87.994865"
|
||||
x="62.565792"
|
||||
y="677.79578" />
|
||||
<g
|
||||
id="g3947"
|
||||
transform="translate(28.790808,2.1888406e-5)">
|
||||
<g
|
||||
transform="matrix(1.1508674,0,0,1.1508674,101.20168,130.22774)"
|
||||
id="g3822"
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="105.65327"
|
||||
y="475.78723" />
|
||||
<g
|
||||
id="g3794"
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none">
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="259.1832"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-1"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="182.4604"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-7"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
id="g3794-9"
|
||||
transform="matrix(0,-1.1508674,1.1508674,0,-236.42714,975.77835)"
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-1-4"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="259.1832"
|
||||
y="475.78723" />
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-7-8"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="182.4604"
|
||||
y="475.78723" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3990"
|
||||
transform="matrix(1.1508674,0,0,1.1508674,205.48365,94.312669)">
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
transform="translate(329.83303,30.931413)"
|
||||
id="g3822-2">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-45"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="105.65327"
|
||||
y="475.78723" />
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3794-5">
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="259.1832"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-1-1"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="182.4604"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-7-7"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3794-9-1"
|
||||
transform="matrix(0,-1,1,0,36.46403,765.63865)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-1-4-1"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="259.1832"
|
||||
y="475.78723" />
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-7-8-5"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="182.4604"
|
||||
y="475.78723" />
|
||||
</g>
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3822-27"
|
||||
transform="translate(406.32072,30.931416)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-6"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="105.65327"
|
||||
y="475.78723" />
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3794-1">
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="259.1832"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-1-42"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="182.4604"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-7-3"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3822-27-2"
|
||||
transform="translate(252.17588,30.133169)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-6-2"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="105.65327"
|
||||
y="475.78723" />
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3794-1-1">
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="259.1832"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-1-42-6"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="182.4604"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-7-3-8"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3822-27-2-5"
|
||||
transform="matrix(0,-1,1,0,36.218278,689.10708)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-6-2-7"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="105.65327"
|
||||
y="475.78723" />
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3794-1-1-6">
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="259.1832"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-1-42-6-1"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="182.4604"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-7-3-8-8"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:57.15011597px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
|
||||
x="7.0528221"
|
||||
y="848.96002"
|
||||
id="text4050"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4052"
|
||||
x="7.0528221"
|
||||
y="848.96002">Motif 0</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:57.15011597px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
|
||||
x="285.1582"
|
||||
y="848.96002"
|
||||
id="text4054"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
x="285.1582"
|
||||
y="848.96002"
|
||||
id="tspan3910">Motif 1</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:57.15011597px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
|
||||
x="739.79376"
|
||||
y="848.96002"
|
||||
id="text4058"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4060"
|
||||
x="739.79376"
|
||||
y="848.96002">Motif 2</tspan></text>
|
||||
<g
|
||||
id="g3326"
|
||||
transform="translate(0,12.312357)">
|
||||
<g
|
||||
id="g3277">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-4-8"
|
||||
width="87.994865"
|
||||
height="87.994865"
|
||||
x="1160.41"
|
||||
y="664.57935" />
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3990-4"
|
||||
transform="matrix(1.1508674,0,0,1.1508674,837.93733,82.000312)">
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
transform="translate(329.83303,30.931413)"
|
||||
id="g3822-2-2">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-45-9"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="105.65327"
|
||||
y="475.78723" />
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3794-5-8">
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="259.1832"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-1-1-2"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="182.4604"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-7-7-4"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3794-9-1-9"
|
||||
transform="matrix(0,-1,1,0,36.46403,765.63865)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-1-4-1-5"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="259.1832"
|
||||
y="475.78723" />
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-7-8-5-0"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="182.4604"
|
||||
y="475.78723" />
|
||||
</g>
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3822-27-4"
|
||||
transform="translate(406.32072,30.931416)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-6-7"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="105.65327"
|
||||
y="475.78723" />
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3794-1-7">
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="259.1832"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-1-42-68"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="182.4604"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-7-3-2"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3822-27-2-51"
|
||||
transform="translate(252.17588,30.133169)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-6-2-73"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="105.65327"
|
||||
y="475.78723" />
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3794-1-1-3">
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="259.1832"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-1-42-6-6"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="182.4604"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-7-3-8-4"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3822-27-2-5-7"
|
||||
transform="matrix(0,-1,1,0,36.218278,689.10708)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-6-2-7-4"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="105.65327"
|
||||
y="475.78723" />
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3794-1-1-6-0">
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="259.1832"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-1-42-6-1-9"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="182.4604"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-7-3-8-8-3"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-4-8-1"
|
||||
width="87.994865"
|
||||
height="87.994865"
|
||||
x="1692.223"
|
||||
y="665.4834" />
|
||||
</g>
|
||||
<rect
|
||||
y="401.08832"
|
||||
x="1427.2754"
|
||||
height="87.994865"
|
||||
width="87.994865"
|
||||
id="rect3753-4-8-0"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:57.15011597px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
|
||||
x="1371.1942"
|
||||
y="848.96002"
|
||||
id="text4058-0"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4060-5"
|
||||
x="1371.1942"
|
||||
y="848.96002">Motif 3</tspan></text>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 18 KiB |
102
4e/DS/4eC/01_pyth_frac_litt/fig/cercle.svg
Normal file
102
4e/DS/4eC/01_pyth_frac_litt/fig/cercle.svg
Normal file
@@ -0,0 +1,102 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg4634"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="Nouveau document 8">
|
||||
<defs
|
||||
id="defs4636" />
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.80366138"
|
||||
inkscape:cx="526.18109"
|
||||
inkscape:cy="372.04724"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata4639">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(0,-308.2677)">
|
||||
<g
|
||||
id="g5182"
|
||||
transform="matrix(1.3936818,0,0,1.3936818,-137.18814,-267.62204)">
|
||||
<path
|
||||
transform="translate(-94.567192,247.29675)"
|
||||
d="m 791.37807,426.17453 c 0,129.53923 -105.0123,234.55153 -234.55153,234.55153 -129.53923,0 -234.55153,-105.0123 -234.55153,-234.55153 0,-129.53923 105.0123,-234.55153 234.55153,-234.55153 129.53923,0 234.55153,105.0123 234.55153,234.55153 z"
|
||||
sodipodi:ry="234.55153"
|
||||
sodipodi:rx="234.55153"
|
||||
sodipodi:cy="426.17453"
|
||||
sodipodi:cx="556.82654"
|
||||
id="path5150"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
sodipodi:type="arc" />
|
||||
<g
|
||||
transform="translate(18.042406,317.91998)"
|
||||
id="g5172">
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
d="m 420.57514,47.283596 47.2836,0"
|
||||
id="path5152"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="translate(0,308.2677)" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
d="m 444.21694,331.9095 0,47.2836"
|
||||
id="path5152-0"
|
||||
inkscape:connector-curvature="0" />
|
||||
</g>
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path5176"
|
||||
d="M 461.63721,365.82572 640.81715,211.53188"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text5178"
|
||||
y="584.50342"
|
||||
x="513.89801"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="584.50342"
|
||||
x="513.89801"
|
||||
id="tspan5180"
|
||||
sodipodi:role="line">r</tspan></text>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 3.9 KiB |
BIN
4e/DS/4eC/01_pyth_frac_litt/fig/triangle1.pdf
Normal file
BIN
4e/DS/4eC/01_pyth_frac_litt/fig/triangle1.pdf
Normal file
Binary file not shown.
134
4e/DS/4eC/01_pyth_frac_litt/fig/triangle1.svg
Normal file
134
4e/DS/4eC/01_pyth_frac_litt/fig/triangle1.svg
Normal file
@@ -0,0 +1,134 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="611.54016"
|
||||
height="527.1261"
|
||||
id="svg3375"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="triangle1.svg">
|
||||
<defs
|
||||
id="defs3377" />
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.7"
|
||||
inkscape:cx="411.99776"
|
||||
inkscape:cy="165.78447"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
fit-margin-top="10"
|
||||
fit-margin-left="10"
|
||||
fit-margin-right="10"
|
||||
fit-margin-bottom="10"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata3380">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title />
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(-15.401787,-157.57925)">
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
d="m 277.14286,230.93361 -201.428574,410 L 557.14286,346.6479 z"
|
||||
id="path3385"
|
||||
inkscape:connector-curvature="0" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="127.14286"
|
||||
y="370.93362"
|
||||
id="text4155"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4157"
|
||||
x="127.14286"
|
||||
y="370.93362">15</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="414.28571"
|
||||
y="250.93361"
|
||||
id="text4159"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4161"
|
||||
x="414.28571"
|
||||
y="250.93361">7</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="351.42856"
|
||||
y="558.07648"
|
||||
id="text4163"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4165"
|
||||
x="351.42856"
|
||||
y="558.07648">17</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="-34.285713"
|
||||
y="462.32645"
|
||||
id="text3120"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(59.6875,212.37892)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3122"
|
||||
x="-34.285713"
|
||||
y="462.32645">A</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="198.57143"
|
||||
y="-16.244978"
|
||||
id="text3124"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(59.6875,212.37892)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3126"
|
||||
x="198.57143"
|
||||
y="-16.244978">B</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="534.28571"
|
||||
y="153.75502"
|
||||
id="text3128"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(59.6875,212.37892)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3130"
|
||||
x="534.28571"
|
||||
y="153.75502">C</tspan></text>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 5.2 KiB |
BIN
4e/DS/4eC/01_pyth_frac_litt/fig/triangle2.pdf
Normal file
BIN
4e/DS/4eC/01_pyth_frac_litt/fig/triangle2.pdf
Normal file
Binary file not shown.
133
4e/DS/4eC/01_pyth_frac_litt/fig/triangle2.svg
Normal file
133
4e/DS/4eC/01_pyth_frac_litt/fig/triangle2.svg
Normal file
@@ -0,0 +1,133 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="591.93915"
|
||||
height="514.38611"
|
||||
id="svg3375"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="triangle2.svg">
|
||||
<defs
|
||||
id="defs3377" />
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.7"
|
||||
inkscape:cx="52.885531"
|
||||
inkscape:cy="162.92731"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
fit-margin-top="10"
|
||||
fit-margin-left="10"
|
||||
fit-margin-right="10"
|
||||
fit-margin-bottom="10"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata3380">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title />
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(-30.717075,-167.46207)">
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
d="m 277.14286,230.93361 -201.428574,410 L 557.14286,346.6479 z"
|
||||
id="path3385"
|
||||
inkscape:connector-curvature="0" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="127.14286"
|
||||
y="370.93362"
|
||||
id="text4155"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4157"
|
||||
x="127.14286"
|
||||
y="370.93362">35</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="414.28571"
|
||||
y="250.93361"
|
||||
id="text4159"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4161"
|
||||
x="414.28571"
|
||||
y="250.93361">12</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="351.42856"
|
||||
y="558.07648"
|
||||
id="text4163"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4165"
|
||||
x="351.42856"
|
||||
y="558.07648">37</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="198.57143"
|
||||
y="-6.2449775"
|
||||
id="text3028"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(59.6875,212.37892)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3030"
|
||||
x="198.57143"
|
||||
y="-6.2449775">A</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="36.830357"
|
||||
y="671.84821"
|
||||
id="text3032"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3034"
|
||||
x="36.830357"
|
||||
y="671.84821">B</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="530"
|
||||
y="146.61217"
|
||||
id="text3036"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(59.6875,212.37892)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3038"
|
||||
x="530"
|
||||
y="146.61217">C</tspan></text>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 5.1 KiB |
45
4e/DS/4eC/01_pyth_frac_litt/index.rst
Normal file
45
4e/DS/4eC/01_pyth_frac_litt/index.rst
Normal file
@@ -0,0 +1,45 @@
|
||||
Notes sur 01 pyth frac litt
|
||||
###########################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: DS
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers 01_pyth_frac_litt_1_.tex <01_pyth_frac_litt_1_.tex>`_
|
||||
|
||||
`Lien vers 01_pyth_frac_litt.tex <01_pyth_frac_litt.tex>`_
|
||||
|
||||
`Lien vers 01_pyth_frac_litt_2_.pdf <01_pyth_frac_litt_2_.pdf>`_
|
||||
|
||||
`Lien vers 01_pyth_frac_litt_1.pdf <01_pyth_frac_litt_1.pdf>`_
|
||||
|
||||
`Lien vers 01_pyth_frac_litt_1_corr.tex <01_pyth_frac_litt_1_corr.tex>`_
|
||||
|
||||
`Lien vers mult_frac.py <mult_frac.py>`_
|
||||
|
||||
`Lien vers 01_pyth_frac_litt_1.tex <01_pyth_frac_litt_1.tex>`_
|
||||
|
||||
`Lien vers number_rotation.py <number_rotation.py>`_
|
||||
|
||||
`Lien vers 01_pyth_frac_litt_1_.pdf <01_pyth_frac_litt_1_.pdf>`_
|
||||
|
||||
`Lien vers 01_pyth_frac_litt_2.pdf <01_pyth_frac_litt_2.pdf>`_
|
||||
|
||||
`Lien vers 01_pyth_frac_litt_2_.tex <01_pyth_frac_litt_2_.tex>`_
|
||||
|
||||
`Lien vers call_litt.py <call_litt.py>`_
|
||||
|
||||
`Lien vers 01_pyth_frac_litt_2.tex <01_pyth_frac_litt_2.tex>`_
|
||||
|
||||
`Lien vers add_frac.py <add_frac.py>`_
|
||||
|
||||
`Lien vers fig/triangle2.pdf <fig/triangle2.pdf>`_
|
||||
|
||||
`Lien vers fig/triangle1.pdf <fig/triangle1.pdf>`_
|
||||
|
||||
`Lien vers fig/carre.pdf <fig/carre.pdf>`_
|
||||
160
4e/DS/4eC/01_pyth_frac_litt/mult_frac.py
Normal file
160
4e/DS/4eC/01_pyth_frac_litt/mult_frac.py
Normal file
@@ -0,0 +1,160 @@
|
||||
#!/usr/bin/env python
|
||||
# encoding: utf-8
|
||||
|
||||
from random import randint, random
|
||||
|
||||
|
||||
|
||||
"""Classe which generate randomly fractions multiplications
|
||||
|
||||
Types of multiplications
|
||||
|
||||
1 -> a x b / c
|
||||
2 -> a x b / c + d / c
|
||||
3 -> a x b / c + d / e >>> TODO
|
||||
4 -> e / f x g / h >>> TODO
|
||||
5 -> i / j x k / l >>> TODO
|
||||
|
||||
where:
|
||||
a integer differente from -1, 0, 1
|
||||
b integer different from 0
|
||||
c integer different from 0 and 1 (could be coprime with b or a)
|
||||
d integer different from 0
|
||||
e, g integer different from 0
|
||||
f, g integer different from 0 and 1 such that e*g is coprime with f*h
|
||||
i, k integer different from 0
|
||||
j, l integer different from 0 and 1 such that i*k and j*l have divisor in common
|
||||
|
||||
Signs can be mod
|
||||
|
||||
|
||||
"""
|
||||
|
||||
def a(min_ = -10, max_ = 10, notIn = [-1,0,1]):
|
||||
"""Generate randomly a
|
||||
|
||||
:param min_: minimum value for a
|
||||
:param max_: maximum value for a
|
||||
:param notIn: value that can't take a
|
||||
:returns: a value
|
||||
|
||||
"""
|
||||
a_ = randint(min_, max_)
|
||||
while a_ in notIn:
|
||||
a_ = randint(min_, max_)
|
||||
|
||||
return a_
|
||||
|
||||
def b(min_ = -10, max_ = 10, notIn = [0]):
|
||||
"""Generate randomly b
|
||||
|
||||
:param min_: minimum value for b
|
||||
:param max_: maximum value for b
|
||||
:param notIn: value that can't take b
|
||||
:returns: a value
|
||||
|
||||
"""
|
||||
return a(min_, max_, notIn)
|
||||
|
||||
def c(b_ = 0, min_ = 2, max_ = 20):
|
||||
"""Generate randomly c
|
||||
|
||||
:param a_: the value of b if c has to be coprime with b (default 0 which means not necessarily coprime)
|
||||
:param min_: minimum value for b (default -20)
|
||||
:param max_: maximum value for b (default 20)
|
||||
:returns: c value
|
||||
|
||||
"""
|
||||
c_ = 0
|
||||
while c_ == 0 or not coprime:
|
||||
c_ = randint(min_, max_)
|
||||
if b_ == 0:
|
||||
coprime = 1
|
||||
elif c_ not in [-1,0,1]:
|
||||
gcd_ = gcd(abs(c_),abs(b_))
|
||||
coprime = (gcd_ == 1)
|
||||
|
||||
return c_
|
||||
|
||||
def d(min_ = -10, max_ = 10, notIn = [0]):
|
||||
"""Generate randomly d
|
||||
|
||||
:param min_: minimum value for d
|
||||
:param max_: maximum value for d
|
||||
:param notIn: value that can't take d
|
||||
:returns: a value
|
||||
|
||||
"""
|
||||
return a(min_, max_, notIn)
|
||||
|
||||
def plusOrMinus(p = 0.5):
|
||||
"""Return plus with prob p and minus otherwise
|
||||
"""
|
||||
pm = random()
|
||||
return "+"*(pm >= p) + "-"*(pm < p)
|
||||
|
||||
def nothingOrMinus(p = 0.5):
|
||||
"""Return nothing with prob p and minus otherwise
|
||||
"""
|
||||
pm = random()
|
||||
return ""*(pm >= p) + "-"*(pm < p)
|
||||
|
||||
def type1():
|
||||
"""@todo: Docstring for type1
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a_ = a()
|
||||
b_ = b()
|
||||
c_ = c(b_=b_*a_)
|
||||
|
||||
return str(a_) + " \\times \\frac{" + str(b_) + "}{" + str(c_) + "}"
|
||||
|
||||
def type2():
|
||||
"""@todo: Docstring for type2
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a_ = a()
|
||||
b_ = b()
|
||||
c_ = c(b_=b_*a_)
|
||||
d_ = d()
|
||||
|
||||
return str(a_) + " \\times \\frac{" + str(b_) + "}{" + str(c_) + "} + \\frac{" + str(d_) + "}{" + str(c_) + "}"
|
||||
|
||||
|
||||
def gcd(a_, b_):
|
||||
"""Compute gcd(a,b)
|
||||
|
||||
:param a: first number
|
||||
:param b: second number
|
||||
:returns: the gcd
|
||||
|
||||
"""
|
||||
if a_ > b_:
|
||||
c_ = a_ % b_
|
||||
else:
|
||||
c_ = b_ % a_
|
||||
|
||||
if c_ == 0:
|
||||
return min(a_,b_)
|
||||
elif a_ == 1:
|
||||
return b_
|
||||
elif b_ == 1:
|
||||
return a_
|
||||
else:
|
||||
return gcd(min(a_,b_), c_)
|
||||
|
||||
if __name__ == '__main__':
|
||||
# print(a())
|
||||
# print(b())
|
||||
# print(c())
|
||||
# print(d(3))
|
||||
# print(e())
|
||||
# print(f())
|
||||
print(type1())
|
||||
print(type2())
|
||||
|
||||
# Reglages pour 'vim'
|
||||
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
||||
# cursor: 16 del
|
||||
94
4e/DS/4eC/01_pyth_frac_litt/number_rotation.py
Executable file
94
4e/DS/4eC/01_pyth_frac_litt/number_rotation.py
Executable file
@@ -0,0 +1,94 @@
|
||||
#!/usr/bin/env python
|
||||
# encoding: utf-8
|
||||
|
||||
import jinja2, random, os
|
||||
import sys
|
||||
import optparse
|
||||
|
||||
def randfloat(approx = 1, low = 0, up = 10):
|
||||
""" return a random number between low and up with approx floating points """
|
||||
ans = random.random()
|
||||
ans = ans*(up - low) + low
|
||||
ans = round(ans, approx)
|
||||
return ans
|
||||
|
||||
random.randfloat = randfloat
|
||||
|
||||
def gaussRandomlist(mu = 0, sigma = 1, size = 10, manip = lambda x:x):
|
||||
""" return a list of a gaussian sample """
|
||||
ans = []
|
||||
for i in range(size):
|
||||
ans += [manip(random.gauss(mu,sigma))]
|
||||
return ans
|
||||
|
||||
random.gaussRandomlist = gaussRandomlist
|
||||
|
||||
def gaussRandomlist_strInt(mu = 0, sigma = 1, size = 10):
|
||||
return gaussRandomlist(mu, sigma, size, manip = lambda x: str(int(x)))
|
||||
|
||||
random.gaussRandomlist_strInt = gaussRandomlist_strInt
|
||||
|
||||
# ------------------
|
||||
# Spécial exo!
|
||||
|
||||
from add_frac import type1, type3, type4
|
||||
exo = {"add_frac1": type1, "add_frac3": type3, "add_frac4": type4}
|
||||
|
||||
from mult_frac import type1, type2
|
||||
exo["mult_frac1"] = type1
|
||||
exo["mult_frac2"] = type2
|
||||
|
||||
from call_litt import exp1, exp2
|
||||
exo["exp1"] = exp1
|
||||
exo["exp2"] = exp2
|
||||
|
||||
|
||||
report_renderer = jinja2.Environment(
|
||||
block_start_string = '%{',
|
||||
block_end_string = '%}',
|
||||
variable_start_string = '%{{',
|
||||
variable_end_string = '%}}',
|
||||
loader = jinja2.FileSystemLoader(os.path.abspath('.'))
|
||||
)
|
||||
|
||||
def main(options):
|
||||
template = report_renderer.get_template(options.template)
|
||||
|
||||
if options.output:
|
||||
output_basename = options.output
|
||||
else:
|
||||
tpl_base = os.path.splitext(options.template)[0]
|
||||
output_basename = tpl_base + "_"
|
||||
|
||||
|
||||
for subj in range(options.num_subj):
|
||||
subj = subj+1
|
||||
dest = output_basename + str(subj) + '.tex'
|
||||
with open( dest, 'w') as f:
|
||||
f.write(template.render(random = random, infos = {"subj" : subj}, exo = exo))
|
||||
os.system("pdflatex " + dest)
|
||||
|
||||
if not options.dirty:
|
||||
os.system("rm *.aux *.log")
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
|
||||
parser = optparse.OptionParser()
|
||||
parser.add_option("-t","--tempalte",action="store",type="string",dest="template", help="File with template")
|
||||
parser.add_option("-o","--output",action="store",type="string",dest="output",help="Base name for output (without .tex or any extension))")
|
||||
parser.add_option("-n","--number_subjects", action="store",type="int", dest="num_subj", default = 2, help="The number of subjects to make")
|
||||
parser.add_option("-d","--dirty", action="store_true", dest="dirty", help="Do not clean after compilation")
|
||||
|
||||
(options, args) = parser.parse_args()
|
||||
|
||||
if not options.template:
|
||||
print("I need a template!")
|
||||
sys.exit(0)
|
||||
|
||||
main(options)
|
||||
|
||||
# -----------------------------
|
||||
# Reglages pour 'vim'
|
||||
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
||||
# cursor: 16 del
|
||||
Reference in New Issue
Block a user