Import work from year 2013-2014
This commit is contained in:
BIN
4e/DS/4eC/03_pyth_litt/03_pyth_litt_1.pdf
Normal file
BIN
4e/DS/4eC/03_pyth_litt/03_pyth_litt_1.pdf
Normal file
Binary file not shown.
198
4e/DS/4eC/03_pyth_litt/03_pyth_litt_1.tex
Normal file
198
4e/DS/4eC/03_pyth_litt/03_pyth_litt_1.tex
Normal file
@@ -0,0 +1,198 @@
|
||||
\documentclass[a4paper,12pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classDS}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{7}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\quatreC}
|
||||
\date{20 mars 2014}
|
||||
\duree{1 heure}
|
||||
\sujet{1}
|
||||
% DS DSCorr DM DMCorr Corr
|
||||
\typedoc{DS}
|
||||
|
||||
%\printanswers
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
Le barème est donné à titre indicatif, il pourra être modifié. Des points sont réservés à présentation.
|
||||
|
||||
\begin{questions}
|
||||
|
||||
\question[4]
|
||||
Une tyrolienne part du sommet d'un arbre à 20m de hauteur pour arriver sur une plateforme à 10m de hauteur. La distance entre le pied de l'arbre et le pied de la plateforme est de 50m.
|
||||
\begin{parts}
|
||||
\part Faire un schéma représentant la situation.
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.5]{./fig/arbre_platforme}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
\part Quelle est la longueur de la tyrolienne?
|
||||
\end{parts}
|
||||
\begin{solution}
|
||||
D'après le dessin, on remarque que $AB = 20 - 10 = 10m$. \\
|
||||
D'après le dessin, on a le triangle $ABC$ rectangle en $A$ donc d'après le théorème de Pythagore, on a
|
||||
\begin{eqnarray*}
|
||||
BC^2 &=& AB^2 + AC^2 \\
|
||||
BC^2 &=& 10^2 + 50^2 \\
|
||||
BC^2 &=& 100 + 2500 \\
|
||||
BC^2 &=& 2600 \\
|
||||
BC &=& \sqrt{2600} \approx 51
|
||||
\end{eqnarray*}
|
||||
Donc la tyrolienne fait 51m de long.
|
||||
\end{solution}
|
||||
|
||||
|
||||
\question[6]
|
||||
On veut construire un local de la forme suivante:
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/local}
|
||||
\end{center}
|
||||
Les pièces utilisés pour la construction sont choisis de tel sorte que
|
||||
\begin{eqnarray*}
|
||||
AF = EB = DC \hspace{2cm} AB = EF \hspace{2cm} BC = ED = GH
|
||||
\end{eqnarray*}
|
||||
\begin{parts}
|
||||
\part Pour s'assurer que le local est bien droit, On mesure $BD$ et on trouve $BD = 13m$.
|
||||
\begin{subparts}
|
||||
\subpart Démontrer que $BCD$ est un triangle rectangle.
|
||||
\begin{solution}
|
||||
D'une part, $BC^2 + DC^2 = 12^2 + 5^2 = 144 + 25 = 169$.
|
||||
|
||||
D'autre part, $BD^2 = 13^2 = 169$.
|
||||
|
||||
Donc on a $BD^2 = BD^2 + DC^2$ donc d'après le réciproque du théorème de Pythagore, le triangle $BCD$ est rectangle en $C$.
|
||||
\end{solution}
|
||||
\subpart Démontrer que $BEDC$ est un rectangle.
|
||||
\begin{solution}
|
||||
Comme $EB = DC$ et que $ED = BC$, le quadrilatère $EDCB$ est un parallélogramme. Or si un parallélogramme a un angle droit, c'est un rectangle. Donc $EDCB$ est un rectangle.
|
||||
\end{solution}
|
||||
\end{subparts}
|
||||
\part Il voudrait installer des panneaux solaires sur le toit.
|
||||
\begin{subparts}
|
||||
\subpart Calculer la distance $GE$.
|
||||
\begin{solution}
|
||||
On sait que le triangle $FGE$ est un triangle rectangle en $G$ donc d'après le théorème de Pythagore, on a
|
||||
\begin{eqnarray*}
|
||||
FE^2 &=& FG^2 + GE^2 \\
|
||||
FG^2 &=& FE^2 - GE^2 \\
|
||||
FG^2 &=& 6^2 - 3^2 \\
|
||||
FG^2 &=& 36 - 9 \\
|
||||
FG^2 &=& 27 \\
|
||||
FG &=& \sqrt{27} = 5.2
|
||||
\end{eqnarray*}
|
||||
Donc $GE = 5.2m$.
|
||||
|
||||
\end{solution}
|
||||
\subpart Quelle est l'aire du toit du local?
|
||||
\begin{solution}
|
||||
\begin{eqnarray*}
|
||||
\mathcal{A} = GE \times ED = 5.2 \times 12 = 62.3
|
||||
\end{eqnarray*}
|
||||
L'aire du toit est $62.3m^2$
|
||||
|
||||
\end{solution}
|
||||
\end{subparts}
|
||||
\end{parts}
|
||||
|
||||
\question[4]
|
||||
Voici un programme de calcul.
|
||||
|
||||
\fbox{\colorbox{base2}{
|
||||
\begin{minipage}[h]{0.4\textwidth}
|
||||
\textbf{Programme A} \\ Choisir un nombre \\ Multiplier par 3 \\ Ajouter 4 \\ Multiplier par 4 \\ Enlever 16
|
||||
\end{minipage}
|
||||
}
|
||||
}
|
||||
|
||||
\begin{parts}
|
||||
\part Montrer que si l'on applique le programme à -1 on trouve -12.
|
||||
\begin{solution}
|
||||
\begin{eqnarray*}
|
||||
-1 \stackrel{\times3}{\longrightarrow} -3 \stackrel{+4}{\longrightarrow} 1 \stackrel{\times4}{\longrightarrow} 4 \stackrel{-16}{\longrightarrow} -12
|
||||
\end{eqnarray*}
|
||||
\end{solution}
|
||||
\part Appliquer le programme à 3.
|
||||
\begin{solution}
|
||||
\begin{eqnarray*}
|
||||
3 \stackrel{\times3}{\longrightarrow} 9 \stackrel{+4}{\longrightarrow} 13 \stackrel{\times4}{\longrightarrow} 52 \stackrel{-16}{\longrightarrow} 36
|
||||
\end{eqnarray*}
|
||||
\end{solution}
|
||||
\part Appliquer le programme à $x$. Montrer que l'on trouve $(3x + 4)\times 4 - 16$.
|
||||
\begin{solution}
|
||||
\begin{eqnarray*}
|
||||
x \stackrel{\times3}{\longrightarrow} 3x \stackrel{+4}{\longrightarrow} 3x+4 \stackrel{\times4}{\longrightarrow} (3x+4)\times4 \stackrel{-16}{\longrightarrow} (3x+4)\times 4 - 16
|
||||
\end{eqnarray*}
|
||||
\end{solution}
|
||||
\part Developper l'expression trouvée à la question précédente.
|
||||
\begin{solution}
|
||||
\begin{eqnarray*}
|
||||
(3x+4)\times4 - 16 & = & 3x\times4 + 4\times 4 - 16 \\
|
||||
&=& 12x + 16 - 16 \\
|
||||
&=& 12x
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{solution}
|
||||
\part Si le programme ne faisait qu'une seule transformation, quelle serait elle?
|
||||
\begin{solution}
|
||||
D'après la question précédente, appliquer tout le programme à $x$ revient à multiplier $x$ par 12. Donc si le programme ne faisait qu'une seule transformation, ce serait de multiplier par 12.
|
||||
\end{solution}
|
||||
\end{parts}
|
||||
|
||||
|
||||
\question[5]
|
||||
Voici trois expressions.
|
||||
\begin{eqnarray*}
|
||||
A = 2(3x + 1) \hspace{1cm} B = 3(x - 1) + 2x(x + 4) \hspace{1cm} C = -(3x + 1) + 4x - 4
|
||||
\end{eqnarray*}
|
||||
\begin{parts}
|
||||
\part Évaluer $A$ et $B$ pour $x = 1$.
|
||||
\begin{solution}
|
||||
Évaluons $A$ avec $x = 1$. Pour cela, on remplace $x$ par 1 dans l'expression de $A$.
|
||||
\begin{eqnarray*}
|
||||
A & = & 2(3\times1 + 1) \\
|
||||
A & = & 2\times (3+1) \\
|
||||
A & = & 2 \times 4 \\
|
||||
A & = & 8
|
||||
\end{eqnarray*}
|
||||
Évaluons $B$ avec $x = 1$
|
||||
\begin{eqnarray*}
|
||||
B & = & 3(1 - 1) + 1\times 1\times (1 + 4) \\
|
||||
B & = & 3\times 0 + 1\times 5 \\
|
||||
B & = & 0 + 5 \\
|
||||
B & = & 5
|
||||
\end{eqnarray*}
|
||||
|
||||
|
||||
\end{solution}
|
||||
\part Développer puis réduire les trois expressions.
|
||||
\begin{solution}
|
||||
\begin{eqnarray*}
|
||||
A & = & 2(3x + 1)\\
|
||||
A & = & 2\times 3x + 2\times 1\\
|
||||
A & = & 6x + 2
|
||||
\end{eqnarray*}
|
||||
\begin{eqnarray*}
|
||||
B & = & 3(x-1) + 2x(x+4) \\
|
||||
B & = & 3\times x + 3\times (-1) + 2x\times x+2x \times 4 \\
|
||||
B & = & 3x + (-3) + 2x^2 + 8x \\
|
||||
B & = & 2x^2 + 3x + 8x + (-3) \\
|
||||
B & = & 2x^2 + 11x -3
|
||||
\end{eqnarray*}
|
||||
|
||||
|
||||
\end{solution}
|
||||
\end{parts}
|
||||
|
||||
|
||||
\end{questions}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/DS/4eC/03_pyth_litt/03_pyth_litt_1_corr.pdf
Normal file
BIN
4e/DS/4eC/03_pyth_litt/03_pyth_litt_1_corr.pdf
Normal file
Binary file not shown.
BIN
4e/DS/4eC/03_pyth_litt/03_pyth_litt_2.pdf
Normal file
BIN
4e/DS/4eC/03_pyth_litt/03_pyth_litt_2.pdf
Normal file
Binary file not shown.
89
4e/DS/4eC/03_pyth_litt/03_pyth_litt_2.tex
Normal file
89
4e/DS/4eC/03_pyth_litt/03_pyth_litt_2.tex
Normal file
@@ -0,0 +1,89 @@
|
||||
\documentclass[a4paper,10pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classDS}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{7}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\quatreC}
|
||||
\date{20 mars 2014}
|
||||
\duree{1 heure}
|
||||
\sujet{2}
|
||||
% DS DSCorr DM DMCorr Corr
|
||||
\typedoc{DS}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
Le barème est donné à titre indicatif, il pourra être modifié. Des points sont réservés à présentation.
|
||||
|
||||
\begin{questions}
|
||||
|
||||
\question[4]
|
||||
Une tyrolienne part du sommet d'un arbre à 20m de hauteur pour arriver sur une plateforme à 10m de hauteur. La distance entre le pied de l'arbre et le pied de la plateforme est de 50m.
|
||||
\begin{parts}
|
||||
\part Faire un schéma représentant la situation.
|
||||
\part Quelle est la longueur de la tyrolienne?
|
||||
\end{parts}
|
||||
|
||||
\question[6]
|
||||
On veut construire un local de la forme suivante:
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/local}
|
||||
\end{center}
|
||||
Les pièces utilisés pour la construction sont choisis de tel sorte que
|
||||
\begin{eqnarray*}
|
||||
AF = EB = DC \hspace{2cm} AB = EF \hspace{2cm} BC = ED = GH
|
||||
\end{eqnarray*}
|
||||
\begin{parts}
|
||||
\part Pour s'assurer que le local est bien droit, On mesure $BD$ et on trouve $BD = 13m$.
|
||||
\begin{subparts}
|
||||
\subpart Démontrer que $BCD$ est un triangle rectangle.
|
||||
\subpart Démontrer que $BEDC$ est un rectangle.
|
||||
\end{subparts}
|
||||
\part Il voudrait installer des panneaux solaires sur le toit.
|
||||
\begin{subparts}
|
||||
\subpart Calculer la distance $GE$.
|
||||
\subpart Quelle est l'aire du toit du local?
|
||||
\end{subparts}
|
||||
\end{parts}
|
||||
|
||||
\question[4]
|
||||
Voici un programme de calcul.
|
||||
|
||||
\fbox{\colorbox{base2}{
|
||||
\begin{minipage}[h]{0.4\textwidth}
|
||||
\textbf{Programme A} \\ Choisir un nombre \\ Multiplier par 4 \\ Enlever 2 \\ Multiplier par 5 \\ Ajouter 10
|
||||
\end{minipage}
|
||||
}
|
||||
}
|
||||
\begin{minipage}[h]{0.5\textwidth}
|
||||
\begin{parts}
|
||||
\part Montrer que si l'on applique le programme à 2 on trouve 20.
|
||||
\part Appliquer le programme à 3.
|
||||
\part Appliquer le programme à $x$. Montrer que l'on trouve $(4x - 2)\times 5 + 10$.
|
||||
\part Developper l'expression trouvée à la question précédente.
|
||||
\part Si le programme ne faisait qu'une seule transformation, quelle serait elle?
|
||||
\end{parts}
|
||||
|
||||
\end{minipage}
|
||||
|
||||
\question[5]
|
||||
Voici trois expressions.
|
||||
\begin{eqnarray*}
|
||||
A = 4(3x - 1) \hspace{1cm} B = 4(- 2x + 4) + 2x(3 + 4x) \hspace{1cm} C = -(7x + 2) + 5x - 4
|
||||
\end{eqnarray*}
|
||||
\begin{parts}
|
||||
\part Évaluer $A$ et $B$ pour $x = 2$.
|
||||
\part Développer puis réduire les trois expressions.
|
||||
\end{parts}
|
||||
|
||||
|
||||
\end{questions}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/DS/4eC/03_pyth_litt/03_pyth_litt_revis.pdf
Normal file
BIN
4e/DS/4eC/03_pyth_litt/03_pyth_litt_revis.pdf
Normal file
Binary file not shown.
113
4e/DS/4eC/03_pyth_litt/03_pyth_litt_revis.tex
Normal file
113
4e/DS/4eC/03_pyth_litt/03_pyth_litt_revis.tex
Normal file
@@ -0,0 +1,113 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
|
||||
% Title Page
|
||||
\title{Révision Pythagore, calcul littéral - Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{fancy}
|
||||
|
||||
\section{Théorème de Pythagore et réciproque}
|
||||
\begin{Exo}
|
||||
$ABC$ triangle rectangle en $B$ tel que $AB = 2$ et $BC = 6$. Calculer $AC$.
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
$EFG$ triangle rectangle en $F$ tel que $EF = 5,3$ et $EG = 5,9$.Calculer $FG$.
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
$IJK$ est un triangle tel que $IJ = 4,8$,$IK = 1,4$ et $JK = 5$.
|
||||
|
||||
Le triangle $IJK$ est-il rectangle? S'il est rectangle quel est l'angle droit et l'hypoténuse?
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
$LMN$ est un triangle tel que $LM = 1,8$,$MN = 14,4$ et $NL = 14$.
|
||||
|
||||
Le triangle $LMN$ est-il rectangle? S'il est rectangle quel est l'angle droit et l'hypoténuse?
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Un terrain de foot (rectangulaire) mesure 60m de largeur et 90m de longueur.
|
||||
\begin{enumerate}
|
||||
\item Faire un dessin à main levée.
|
||||
\item Calculer la longueur de la diagonale de ce terrain.
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Une tyrolienne part du sommet d'un arbre à 20m de hauteur pour arriver sur une plateforme à 10m de hauteur. La distance entre le pied de l'arbre et le pied de la plateforme est de 50m.
|
||||
\begin{enumerate}
|
||||
\item Faire un schéma représentant la situation.
|
||||
\item Quelle est la longueur de la tyrolienne?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\newpage
|
||||
|
||||
\section{Calcul littéral}
|
||||
|
||||
\begin{Exo}
|
||||
Évaluer les expressions ci-dessous pour les valeurs indiquées à coté.
|
||||
\begin{eqnarray*}
|
||||
A = 2x -1& \mbox{ avec } & x = 3 \\
|
||||
B = 2(- y - 1)& \mbox{ avec } & y = 8 \\
|
||||
C = (3x + 1)(4 - 2x) & \mbox{ avec } & x = -3 \\
|
||||
D = 2x - 1& \mbox{ avec } & x = \frac{3}{5} \\
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Réduire les expressions suivantes:
|
||||
\begin{eqnarray*}
|
||||
A & = & 2x + 4x + 3x + 1 + 3 \\
|
||||
B & = & 4 \times 2x - 7 \times 3 \\
|
||||
C & = & 7x - 4x + 1 - 3 \\
|
||||
D & = & 2x + 4 - 3x + 3 \\
|
||||
E & = & 4\times 2x + 4\times2 - 3x + 6 \\
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Relier les formes factorisées avec la forme développées qui lui est égale.
|
||||
|
||||
\begin{minipage}[h]{0.2\textwidth}
|
||||
\flushright
|
||||
\textbf{Forme factorisée}
|
||||
$3(2x - 1) \qquad \bullet$ \\[0.5cm]
|
||||
$(-3x + 4)\times 2 \qquad \bullet$ \\[0.5cm]
|
||||
$x(3x + 1) \qquad \bullet$ \\[0.5cm]
|
||||
$5(-x - 9) \qquad \bullet$ \\[0.5cm]
|
||||
\end{minipage}
|
||||
\hspace{1cm}
|
||||
\begin{minipage}[h]{0.2\textwidth}
|
||||
\textbf{Forme développée}
|
||||
\begin{itemize}
|
||||
\item $4x^2$
|
||||
\item $6x - 1$
|
||||
\item $-6x + 8$
|
||||
\item $-5x - 45$
|
||||
\item $3x^2 + x$
|
||||
\item $6x - 3$
|
||||
\end{itemize}
|
||||
|
||||
\end{minipage}
|
||||
|
||||
\end{Exo}
|
||||
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/DS/4eC/03_pyth_litt/fig/arbre_platforme.pdf
Normal file
BIN
4e/DS/4eC/03_pyth_litt/fig/arbre_platforme.pdf
Normal file
Binary file not shown.
289
4e/DS/4eC/03_pyth_litt/fig/arbre_platforme.svg
Normal file
289
4e/DS/4eC/03_pyth_litt/fig/arbre_platforme.svg
Normal file
@@ -0,0 +1,289 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="Nouveau document 1">
|
||||
<defs
|
||||
id="defs4">
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Mend"
|
||||
style="overflow:visible;">
|
||||
<path
|
||||
id="path3776"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1.0pt;"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mstart"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Mstart"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
id="path3773"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1.0pt"
|
||||
transform="scale(0.4) translate(10,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="Arrow1Mstart-1"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3773-7"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(0.4,0,0,0.4,4,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="Arrow1Mend-4"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3776-0"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(-0.4,0,0,-0.4,-4,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="Arrow1Mstart-4"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3773-8"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(0.4,0,0,0.4,4,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="Arrow1Mend-8"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3776-2"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(-0.4,0,0,-0.4,-4,0)" />
|
||||
</marker>
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.74118969"
|
||||
inkscape:cx="526.18109"
|
||||
inkscape:cy="372.04724"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1280"
|
||||
inkscape:window-height="974"
|
||||
inkscape:window-x="-8"
|
||||
inkscape:window-y="-8"
|
||||
inkscape:window-maximized="1" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(0,-308.2677)">
|
||||
<g
|
||||
id="g4843"
|
||||
transform="matrix(1.1062067,0,0,1.1062067,-93.028203,-117.67739)">
|
||||
<rect
|
||||
transform="translate(0,308.2677)"
|
||||
y="275.92822"
|
||||
x="217.21835"
|
||||
height="325.15292"
|
||||
width="62.062386"
|
||||
id="rect3753"
|
||||
style="opacity:0.98999999;fill:#976604;fill-opacity:1;stroke:#ffffff;stroke-opacity:1" />
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
d="m 357.53332,248.94458 c 0,60.35576 -45.60574,109.28377 -101.86328,109.28377 -56.25753,0 -101.86327,-48.92801 -101.86327,-109.28377 0,-60.35576 45.60574,-109.28377 101.86327,-109.28377 56.25754,0 101.86328,48.92801 101.86328,109.28377 z"
|
||||
sodipodi:ry="109.28377"
|
||||
sodipodi:rx="101.86327"
|
||||
sodipodi:cy="248.94458"
|
||||
sodipodi:cx="255.67004"
|
||||
id="path3755"
|
||||
style="opacity:0.98999999;fill:#36c100;fill-opacity:1;stroke:#ffffff;stroke-opacity:1"
|
||||
sodipodi:type="arc" />
|
||||
<rect
|
||||
transform="translate(0,308.2677)"
|
||||
y="462.11539"
|
||||
x="700.22559"
|
||||
height="141.66414"
|
||||
width="168.64778"
|
||||
id="rect3757"
|
||||
style="opacity:0.98999999;fill:#c8780b;fill-opacity:1;stroke:#ffffff;stroke-opacity:1" />
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3759"
|
||||
d="m 279.28073,379.81527 422.29406,83.6493"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3761"
|
||||
d="m 188.88552,381.16445 0,209.12325"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Mstart);marker-end:url(#Arrow1Mend)" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3761-9"
|
||||
d="m 902.60295,779.33994 0,125.0996"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Mstart);marker-end:url(#Arrow1Mend)" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3761-4"
|
||||
d="m 671.24651,953.87185 -358.93914,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Mstart);marker-end:url(#Arrow1Mend)" />
|
||||
<text
|
||||
transform="translate(0,308.2677)"
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4817"
|
||||
y="491.79739"
|
||||
x="99.839493"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Arial;-inkscape-font-specification:Arial"
|
||||
xml:space="preserve"><tspan
|
||||
y="491.79739"
|
||||
x="99.839493"
|
||||
id="tspan4819"
|
||||
sodipodi:role="line">20m</tspan></text>
|
||||
<text
|
||||
transform="translate(0,308.2677)"
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4821"
|
||||
y="551.16144"
|
||||
x="940.38007"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Arial;-inkscape-font-specification:Arial"
|
||||
xml:space="preserve"><tspan
|
||||
y="551.16144"
|
||||
x="940.38007"
|
||||
id="tspan4823"
|
||||
sodipodi:role="line">10m</tspan></text>
|
||||
<text
|
||||
transform="translate(0,308.2677)"
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4825"
|
||||
y="699.57147"
|
||||
x="434.43671"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Arial;-inkscape-font-specification:Arial"
|
||||
xml:space="preserve"><tspan
|
||||
y="699.57147"
|
||||
x="434.43671"
|
||||
id="tspan4827"
|
||||
sodipodi:role="line">50m</tspan></text>
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path4829"
|
||||
d="m 699.29369,463.6138 -421.67505,0 0,-83.95341"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:5, 5;stroke-dashoffset:0" />
|
||||
<text
|
||||
transform="translate(0,308.2677)"
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4831"
|
||||
y="504.63647"
|
||||
x="263.30841"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Arial;-inkscape-font-specification:Arial"
|
||||
xml:space="preserve"><tspan
|
||||
y="504.63647"
|
||||
x="263.30841"
|
||||
id="tspan4833"
|
||||
sodipodi:role="line">A</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4835"
|
||||
y="753.75519"
|
||||
x="703.10974"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Arial;-inkscape-font-specification:Arial"
|
||||
xml:space="preserve"><tspan
|
||||
y="753.75519"
|
||||
x="703.10974"
|
||||
id="tspan4837"
|
||||
sodipodi:role="line">C</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4839"
|
||||
y="673.61786"
|
||||
x="267.12445"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Arial;-inkscape-font-specification:Arial"
|
||||
xml:space="preserve"><tspan
|
||||
y="673.61786"
|
||||
x="267.12445"
|
||||
id="tspan4841"
|
||||
sodipodi:role="line">B</tspan></text>
|
||||
</g>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:32px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Arial;-inkscape-font-specification:Arial"
|
||||
x="701.57477"
|
||||
y="832.4455"
|
||||
id="text4865"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4867"
|
||||
x="701.57477"
|
||||
y="832.4455">Platforme</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:32px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Arial;-inkscape-font-specification:Arial"
|
||||
x="140.31496"
|
||||
y="507.29254"
|
||||
id="text4869"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4871"
|
||||
x="140.31496"
|
||||
y="507.29254">Arbre</tspan></text>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 11 KiB |
BIN
4e/DS/4eC/03_pyth_litt/fig/local.pdf
Normal file
BIN
4e/DS/4eC/03_pyth_litt/fig/local.pdf
Normal file
Binary file not shown.
231
4e/DS/4eC/03_pyth_litt/fig/local.svg
Normal file
231
4e/DS/4eC/03_pyth_litt/fig/local.svg
Normal file
@@ -0,0 +1,231 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="Nouveau document 1">
|
||||
<defs
|
||||
id="defs4" />
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.80366138"
|
||||
inkscape:cx="526.18109"
|
||||
inkscape:cy="372.04724"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(0,-308.2677)">
|
||||
<g
|
||||
id="g4512"
|
||||
transform="matrix(1.2895143,0,0,1.2895143,-121.63629,-140.19451)">
|
||||
<rect
|
||||
transform="translate(0,308.2677)"
|
||||
y="302.36615"
|
||||
x="243.8838"
|
||||
height="258.81546"
|
||||
width="207.79895"
|
||||
id="rect3753"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<rect
|
||||
transform="matrix(0.90427687,-0.42694653,0,1,0,0)"
|
||||
y="824.44843"
|
||||
x="501.8287"
|
||||
height="256.7832"
|
||||
width="278.79544"
|
||||
id="rect3753-8"
|
||||
style="fill:none;stroke:#000000;stroke-width:5.76871872;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
sodipodi:nodetypes="ccc"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path4293"
|
||||
d="m 243.18755,611.02023 39.79706,-97.78105 173.74952,98.71555"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.53290987;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
transform="matrix(0.90089844,-0.43402995,0.86749937,0.49743828,0,0)"
|
||||
y="709.08301"
|
||||
x="-367.16049"
|
||||
height="195.63438"
|
||||
width="280.2171"
|
||||
id="rect3753-8-4"
|
||||
style="fill:none;stroke:#000000;stroke-width:5.50594616;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<rect
|
||||
transform="matrix(0.92123996,0.38899478,-0.38899478,0.92123996,0,0)"
|
||||
y="363.6965"
|
||||
x="462.08862"
|
||||
height="16.175966"
|
||||
width="16.175966"
|
||||
id="rect4331"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4333"
|
||||
y="904.28986"
|
||||
x="206.55466"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="904.28986"
|
||||
x="206.55466"
|
||||
id="tspan4335"
|
||||
sodipodi:role="line">A</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4337"
|
||||
y="905.53418"
|
||||
x="455.41568"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="905.53418"
|
||||
x="455.41568"
|
||||
id="tspan4339"
|
||||
sodipodi:role="line">B</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4341"
|
||||
y="763.68341"
|
||||
x="720.45264"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="763.68341"
|
||||
x="720.45264"
|
||||
id="tspan4343"
|
||||
sodipodi:role="line">C</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4345"
|
||||
y="491.18054"
|
||||
x="724.18561"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="491.18054"
|
||||
x="724.18561"
|
||||
id="tspan4347"
|
||||
sodipodi:role="line">D</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4349"
|
||||
y="586.99207"
|
||||
x="445.46124"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="586.99207"
|
||||
x="445.46124"
|
||||
id="tspan4351"
|
||||
sodipodi:role="line">E</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4353"
|
||||
y="635.51996"
|
||||
x="207.79897"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="635.51996"
|
||||
x="207.79897"
|
||||
id="tspan4355"
|
||||
sodipodi:role="line">F</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4357"
|
||||
y="499.89069"
|
||||
x="255.08257"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="499.89069"
|
||||
x="255.08257"
|
||||
id="tspan4359"
|
||||
sodipodi:role="line">G</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4361"
|
||||
y="376.70447"
|
||||
x="535.05121"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="376.70447"
|
||||
x="535.05121"
|
||||
id="tspan4363"
|
||||
sodipodi:role="line">H</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4365"
|
||||
y="853.27338"
|
||||
x="564.91455"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="853.27338"
|
||||
x="564.91455"
|
||||
id="tspan4367"
|
||||
sodipodi:role="line">12m</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4369"
|
||||
y="624.32123"
|
||||
x="721.69696"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="624.32123"
|
||||
x="721.69696"
|
||||
id="tspan4371"
|
||||
sodipodi:role="line">5m</tspan></text>
|
||||
<text
|
||||
transform="translate(0,308.2677)"
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4504"
|
||||
y="609.70953"
|
||||
x="311.07629"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="609.70953"
|
||||
x="311.07629"
|
||||
id="tspan4506"
|
||||
sodipodi:role="line">6m</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text4508"
|
||||
y="560.86163"
|
||||
x="204.06604"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="560.86163"
|
||||
x="204.06604"
|
||||
id="tspan4510"
|
||||
sodipodi:role="line">3m</tspan></text>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 9.9 KiB |
29
4e/DS/4eC/03_pyth_litt/index.rst
Normal file
29
4e/DS/4eC/03_pyth_litt/index.rst
Normal file
@@ -0,0 +1,29 @@
|
||||
Notes sur 03 pyth litt
|
||||
######################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: DS
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers 03_pyth_litt_1.pdf <03_pyth_litt_1.pdf>`_
|
||||
|
||||
`Lien vers 03_pyth_litt_1.tex <03_pyth_litt_1.tex>`_
|
||||
|
||||
`Lien vers 03_pyth_litt_2.tex <03_pyth_litt_2.tex>`_
|
||||
|
||||
`Lien vers 03_pyth_litt_revis.pdf <03_pyth_litt_revis.pdf>`_
|
||||
|
||||
`Lien vers 03_pyth_litt_2.pdf <03_pyth_litt_2.pdf>`_
|
||||
|
||||
`Lien vers 03_pyth_litt_1_corr.pdf <03_pyth_litt_1_corr.pdf>`_
|
||||
|
||||
`Lien vers 03_pyth_litt_revis.tex <03_pyth_litt_revis.tex>`_
|
||||
|
||||
`Lien vers fig/arbre_platforme.pdf <fig/arbre_platforme.pdf>`_
|
||||
|
||||
`Lien vers fig/local.pdf <fig/local.pdf>`_
|
||||
Reference in New Issue
Block a user