Import work from year 2013-2014
This commit is contained in:
BIN
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc.pdf
Normal file
BIN
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc.pdf
Normal file
Binary file not shown.
81
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc.tex
Normal file
81
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc.tex
Normal file
@@ -0,0 +1,81 @@
|
||||
\documentclass[a4paper,10pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classDS}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{4}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\quatreD}
|
||||
\date{18 décembre 2013}
|
||||
%\duree{1 heure}
|
||||
\sujet{%{{infos.subj%}}}
|
||||
% DS DSCorr DM DMCorr Corr
|
||||
\typedoc{DS}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
Le barème est donné à titre indicatif, il pourra être modifié.
|
||||
|
||||
\begin{Exo}[6]
|
||||
% Copié de http://euler.ac-versailles.fr/eulerwikis/attach/Yann_Bourit/tri_rect_cercles_%E9quations_a.pdf
|
||||
$[AB]$ est un segment de 10cm.$C$ un point du segment $[AB]$ tel que $AC = 6cm$. $\mathcal{C}1$ est le cercle de diamètre $[AC]$ et $\mathcal{C}2$ est le cercle de diamètre $[CB]$.
|
||||
\begin{enumerate}
|
||||
\item Tracer la figure.
|
||||
\item Placer $D$ un point du cercle $\mathcal{C}1$ different de $A$ et $C$. Puis placer le point $E$, le point d'intersection entre le cercle $\mathcal{C}2$ et $(CD)$.
|
||||
\item Quelle est la nature du triangle $ADC$?
|
||||
\item Quelle est la nature du triangle $BEC$?
|
||||
\item Démontrer que $(AC)$ et $(EB)$ sont parallèles.
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[6]
|
||||
\begin{minipage}[h]{0.4\textwidth}
|
||||
\includegraphics[scale=0.2]{./fig/rectangle.pdf}
|
||||
\end{minipage}
|
||||
\begin{minipage}[h]{0.6\textwidth}
|
||||
\begin{enumerate}
|
||||
\item Exprimer $AD$ en fonction de $x$.
|
||||
\item Expliquer pourquoi l'aire du rectangle $ABCD$ est égale à $21x$.
|
||||
\item Expliquer pourquoi le périmètre du rectangle $ABCD$ est égale à $6x + 14$.
|
||||
\item Si $x = 2$, quelle est l'aire du rectangle $ABCD$?
|
||||
\item Si $x = 1,5$, quel est le périmètre du rectangle $ABCD$?
|
||||
\end{enumerate}
|
||||
\end{minipage}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[3]
|
||||
Simplifier les fractions suivantes:
|
||||
\begin{eqnarray*}
|
||||
A & = & %{{ exo.frac1() %}} \\
|
||||
B & = & %{{ exo.frac3() %}} \\
|
||||
C & = & %{{ exo.frac4() %}}
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[2]
|
||||
Évaluer les expressions suivantes:
|
||||
\begin{eqnarray*}
|
||||
%{{ exo.exp1(letter = "A")%}} \\
|
||||
%{{ exo.exp2(letter = "B") %}}
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[2]
|
||||
Simplifier les expressions suivantes
|
||||
%\begin{eqnarray*}
|
||||
% I & = &
|
||||
% J & = &
|
||||
%\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
%\begin{Exo}[bonus]
|
||||
%
|
||||
%\end{Exo}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_1.pdf
Normal file
BIN
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_1.pdf
Normal file
Binary file not shown.
80
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_1.tex
Normal file
80
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_1.tex
Normal file
@@ -0,0 +1,80 @@
|
||||
\documentclass[a4paper,12pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classDS}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{4}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\quatreD}
|
||||
\date{18 décembre 2013}
|
||||
\duree{1 heure}
|
||||
\sujet{1}
|
||||
% DS DSCorr DM DMCorr Corr
|
||||
\typedoc{DS}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
Le barème est donné à titre indicatif, il pourra être modifié.
|
||||
|
||||
\begin{Exo}[6]
|
||||
% Copié de http://euler.ac-versailles.fr/eulerwikis/attach/Yann_Bourit/tri_rect_cercles_%E9quations_a.pdf
|
||||
$[AB]$ est un segment de 10cm. $C$ un point du segment $[AB]$ tel que $AC =$ 6cm. $\mathcal{C}_1$ est le cercle de diamètre $[AC]$ et $\mathcal{C}_2$ est le cercle de diamètre $[CB]$.
|
||||
\begin{enumerate}
|
||||
\item Tracer la figure.
|
||||
\item Placer $D$ un point du cercle $\mathcal{C}_1$ different de $A$ et $C$. Puis placer le point $E$, le point d'intersection entre le cercle $\mathcal{C}_2$ et $(CD)$.
|
||||
\item Quelle est la nature du triangle $ADC$?
|
||||
\item Quelle est la nature du triangle $BEC$?
|
||||
\item Démontrer que $(AC)$ et $(EB)$ sont parallèles.
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[6]
|
||||
\begin{minipage}[h]{0.4\textwidth}
|
||||
\includegraphics[scale=0.2]{./fig/rectangle.pdf}
|
||||
\end{minipage}
|
||||
\begin{minipage}[h]{0.6\textwidth}
|
||||
\begin{enumerate}
|
||||
\item Exprimer $AD$ en fonction de $x$.
|
||||
\item Expliquer pourquoi l'aire du rectangle $ABCD$ est égale à $15x$.
|
||||
\item Expliquer pourquoi le périmètre du rectangle $ABCD$ est égale à $6x + 10$.
|
||||
\item Si $x = 2$, quelle est l'aire du rectangle $ABCD$?
|
||||
\item Si $x = 1,5$, quel est le périmètre du rectangle $ABCD$?
|
||||
\end{enumerate}
|
||||
\end{minipage}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[3]
|
||||
Simplifier les fractions suivantes:
|
||||
\begin{eqnarray*}
|
||||
A & = & -\frac{3}{10}-\frac{7}{10} \\
|
||||
B & = & \frac{2}{5}-\frac{-4}{3} \\
|
||||
C & = & 1-\frac{-1}{7}
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[2]
|
||||
Évaluer les expressions suivantes:
|
||||
\begin{eqnarray*}
|
||||
A = 5x + 3 & \mbox{avec} & x = 1 \\
|
||||
B = -3x(-2x + 4) & \mbox{avec} & x = 3
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[2]
|
||||
Simplifier les expressions suivantes
|
||||
\begin{eqnarray*}
|
||||
I & = & 4x \times (-2) \times 5\\
|
||||
J & = & 3x + 4 - 2x - 8 + 5x
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
%\begin{Exo}[bonus]
|
||||
%
|
||||
%\end{Exo}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
BIN
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_1_.pdf
Normal file
BIN
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_1_.pdf
Normal file
Binary file not shown.
125
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_1_.tex
Normal file
125
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_1_.tex
Normal file
@@ -0,0 +1,125 @@
|
||||
\documentclass[a4paper,12pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classDS}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{4}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\quatreD}
|
||||
\date{18 décembre 2013}
|
||||
\duree{1 heure}
|
||||
\sujet{1}
|
||||
% DS DSCorr DM DMCorr Corr
|
||||
\typedoc{DS}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
Le barème est donné à titre indicatif, il pourra être modifié.
|
||||
|
||||
\begin{Exo}[6]
|
||||
% Copié de http://euler.ac-versailles.fr/eulerwikis/attach/Yann_Bourit/tri_rect_cercles_%E9quations_a.pdf
|
||||
$[AB]$ est un segment de 10cm. $C$ un point du segment $[AB]$ tel que $AC =$ 6cm. $\mathcal{C}_1$ est le cercle de diamètre $[AC]$ et $\mathcal{C}_2$ est le cercle de diamètre $[CB]$.
|
||||
\begin{enumerate}
|
||||
\item Tracer la figure.
|
||||
\item Placer $D$ un point du cercle $\mathcal{C}_1$ different de $A$ et $C$. Puis placer le point $E$, le point d'intersection entre le cercle $\mathcal{C}_2$ et $(CD)$.
|
||||
\item Quelle est la nature du triangle $ADC$?
|
||||
\item Quelle est la nature du triangle $BEC$?
|
||||
\item Démontrer que $(AC)$ et $(EB)$ sont parallèles.
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[6]
|
||||
\begin{minipage}[h]{0.4\textwidth}
|
||||
\includegraphics[scale=0.2]{./fig/rectangle.pdf}
|
||||
\end{minipage}
|
||||
\begin{minipage}[h]{0.6\textwidth}
|
||||
\begin{enumerate}
|
||||
\item Exprimer $AD$ en fonction de $x$.
|
||||
\item Expliquer pourquoi l'aire du rectangle $ABCD$ est égale à $15x$.
|
||||
\item Expliquer pourquoi le périmètre du rectangle $ABCD$ est égale à $6x + 10$.
|
||||
\item Si $x = 2$, quelle est l'aire du rectangle $ABCD$?
|
||||
\item Si $x = 1,5$, quel est le périmètre du rectangle $ABCD$?
|
||||
\end{enumerate}
|
||||
\end{minipage}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[3]
|
||||
Simplifier, sans utiliser de nombres à virgule, les fractions suivantes:
|
||||
\begin{eqnarray*}
|
||||
A & = & -\frac{3}{10}-\frac{7}{10} \\
|
||||
B & = & \frac{2}{5}-\frac{-4}{3} \\
|
||||
C & = & 1-\frac{-1}{7}
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[2]
|
||||
Évaluer les expressions suivantes:
|
||||
\begin{eqnarray*}
|
||||
A = 5x + 3 & \mbox{avec} & x = -1 \\
|
||||
B = -3x(-2x + 4) & \mbox{avec} & x = 3
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[2]
|
||||
Simplifier les expressions suivantes
|
||||
\begin{eqnarray*}
|
||||
I & = & 4x \times (-2) \times 5\\
|
||||
J & = & 3x + 4 - 2x - 8 + 5x
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\clearpage
|
||||
\begin{Exo}
|
||||
\exo{Bonus}
|
||||
On crée des motifs de la façon suivante:
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.4]{./fig/carre.pdf}
|
||||
\end{center}
|
||||
\begin{enumerate}
|
||||
\item Dessiner le motif 5. Combien y a-t-il de petits carrés?
|
||||
\item Combien de petits carrés y a-t-il dans le motif $n$?
|
||||
\item Combien de petits carrés y a-t-il dans le motif 10 000?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\section*{Table de multiplication}
|
||||
|
||||
\begin{center}
|
||||
|
||||
\begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|}
|
||||
|
||||
\hline
|
||||
Multiplié par & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
|
||||
\hline
|
||||
\hline
|
||||
1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
|
||||
\hline
|
||||
2 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 \\
|
||||
\hline
|
||||
3 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 \\
|
||||
\hline
|
||||
4 & 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 \\
|
||||
\hline
|
||||
5 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 \\
|
||||
\hline
|
||||
6 & 6 & 12 & 18 & 24 & 30 & 36 & 42 & 48 & 54 & 60 \\
|
||||
\hline
|
||||
7 & 7 & 14 & 21 & 28 & 35 & 42 & 49 & 56 & 63 & 70 \\
|
||||
\hline
|
||||
8 & 8 & 16 & 24 & 32 & 40 & 48 & 56 & 64 & 72 & 80 \\
|
||||
\hline
|
||||
9 & 9 & 18 & 27 & 36 & 45 & 54 & 63 & 72 & 81 & 90 \\
|
||||
\hline
|
||||
10 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
|
||||
\end{center}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
BIN
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_2.pdf
Normal file
BIN
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_2.pdf
Normal file
Binary file not shown.
115
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_2.tex
Normal file
115
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_2.tex
Normal file
@@ -0,0 +1,115 @@
|
||||
\documentclass[a4paper,10pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classDS}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{4}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\quatreD}
|
||||
\date{18 décembre 2013}
|
||||
\duree{1 heure}
|
||||
\sujet{2}
|
||||
% DS DSCorr DM DMCorr Corr
|
||||
\typedoc{DS}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
Le barème est donné à titre indicatif, il pourra être modifié.
|
||||
|
||||
\begin{Exo}[6]
|
||||
% Copié de http://euler.ac-versailles.fr/eulerwikis/attach/Yann_Bourit/tri_rect_cercles_%E9quations_a.pdf
|
||||
$[AB]$ est un segment de $10cm$. $C$ un point du segment $[AB]$ tel que $AC = 6cm$. $\mathcal{C}1$ est le cercle de diamètre $[AC]$ et $\mathcal{C}2$ est le cercle de diamètre $[CB]$.
|
||||
\begin{enumerate}
|
||||
\item Tracer la figure.
|
||||
\item Placer $D$ un point du cercle $\mathcal{C}1$ different de $A$ et $C$. Puis placer le point $E$, le point d'intersection entre le cercle $\mathcal{C}2$ et $(CD)$.
|
||||
\item Quelle est la nature du triangle $ADC$?
|
||||
\item Quelle est la nature du triangle $BEC$?
|
||||
\item Démontrer que $(AC)$ et $(EB)$ sont parallèles.
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[6]
|
||||
\begin{minipage}[h]{0.4\textwidth}
|
||||
\includegraphics[scale=0.2]{./fig/rectangle.pdf}
|
||||
\end{minipage}
|
||||
\begin{minipage}[h]{0.6\textwidth}
|
||||
\begin{enumerate}
|
||||
\item Exprimer $AD$ en fonction de $x$.
|
||||
\item Expliquer pourquoi l'aire du rectangle $ABCD$ est égale à $15x$.
|
||||
\item Expliquer pourquoi le périmètre du rectangle $ABCD$ est égale à $6x + 10$.
|
||||
\item Si $x = 3$, quelle est l'aire du rectangle $ABCD$?
|
||||
\item Si $x = 0,5$, quel est le périmètre du rectangle $ABCD$?
|
||||
\end{enumerate}
|
||||
\end{minipage}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[3]
|
||||
Simplifier les fractions suivantes:
|
||||
\begin{eqnarray*}
|
||||
A & = & -\frac{19}{9}+\frac{-14}{9} \\
|
||||
B & = & -\frac{-19}{4}-\frac{-17}{6} \\
|
||||
C & = & -5+\frac{17}{10}
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[2]
|
||||
Évaluer les expressions suivantes:
|
||||
\begin{eqnarray*}
|
||||
A = 2x + 7 & \mbox{avec} & x = -9 \\
|
||||
B = 10x(2x + 1) & \mbox{avec} & x = 2
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[2]
|
||||
Simplifier les expressions suivantes
|
||||
\begin{eqnarray*}
|
||||
I & = & (-3) \times 2x \times (-5) \\
|
||||
J & = & 5 + 6x - 2x - 2x - 9
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
%\begin{Exo}[bonus]
|
||||
%
|
||||
%\end{Exo}
|
||||
|
||||
\section*{Table de multiplication}
|
||||
|
||||
\begin{center}
|
||||
|
||||
\begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|}
|
||||
|
||||
\hline
|
||||
Multiplié par & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
|
||||
\hline
|
||||
\hline
|
||||
1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
|
||||
\hline
|
||||
2 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 \\
|
||||
\hline
|
||||
3 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 \\
|
||||
\hline
|
||||
4 & 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 \\
|
||||
\hline
|
||||
5 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 \\
|
||||
\hline
|
||||
6 & 6 & 12 & 18 & 24 & 30 & 36 & 42 & 48 & 54 & 60 \\
|
||||
\hline
|
||||
7 & 7 & 14 & 21 & 28 & 35 & 42 & 49 & 56 & 63 & 70 \\
|
||||
\hline
|
||||
8 & 8 & 16 & 24 & 32 & 40 & 48 & 56 & 64 & 72 & 80 \\
|
||||
\hline
|
||||
9 & 9 & 18 & 27 & 36 & 45 & 54 & 63 & 72 & 81 & 90 \\
|
||||
\hline
|
||||
10 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
|
||||
\end{center}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
BIN
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_2_.pdf
Normal file
BIN
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_2_.pdf
Normal file
Binary file not shown.
126
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_2_.tex
Normal file
126
4e/DS/4eD/12_litt_frac_triCerc/12_litt_frac_triCerc_2_.tex
Normal file
@@ -0,0 +1,126 @@
|
||||
\documentclass[a4paper,10pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classDS}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{4}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\quatreD}
|
||||
\date{18 décembre 2013}
|
||||
\duree{1 heure}
|
||||
\sujet{2}
|
||||
% DS DSCorr DM DMCorr Corr
|
||||
\typedoc{DS}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
Le barème est donné à titre indicatif, il pourra être modifié.
|
||||
|
||||
\begin{Exo}[6]
|
||||
% Copié de http://euler.ac-versailles.fr/eulerwikis/attach/Yann_Bourit/tri_rect_cercles_%E9quations_a.pdf
|
||||
$[AB]$ est un segment de $10cm$. $C$ un point du segment $[AB]$ tel que $AC = 6cm$. $\mathcal{C}_1$ est le cercle de diamètre $[AC]$ et $\mathcal{C}_2$ est le cercle de diamètre $[CB]$.
|
||||
\begin{enumerate}
|
||||
\item Tracer la figure.
|
||||
\item Placer $D$ un point du cercle $\mathcal{C}_1$ different de $A$ et $C$. Puis placer le point $E$, le point d'intersection entre le cercle $\mathcal{C}_2$ et $(CD)$.
|
||||
\item Quelle est la nature du triangle $ADC$?
|
||||
\item Quelle est la nature du triangle $BEC$?
|
||||
\item Démontrer que $(AC)$ et $(EB)$ sont parallèles.
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[6]
|
||||
\begin{minipage}[h]{0.4\textwidth}
|
||||
\includegraphics[scale=0.2]{./fig/rectangle.pdf}
|
||||
\end{minipage}
|
||||
\begin{minipage}[h]{0.6\textwidth}
|
||||
\begin{enumerate}
|
||||
\item Exprimer $AD$ en fonction de $x$.
|
||||
\item Expliquer pourquoi l'aire du rectangle $ABCD$ est égale à $15x$.
|
||||
\item Expliquer pourquoi le périmètre du rectangle $ABCD$ est égale à $6x + 10$.
|
||||
\item Si $x = 3$, quelle est l'aire du rectangle $ABCD$?
|
||||
\item Si $x = 0,5$, quel est le périmètre du rectangle $ABCD$?
|
||||
\end{enumerate}
|
||||
\end{minipage}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[3]
|
||||
Simplifier, sans utiliser de nombres à virgule, les fractions suivantes:
|
||||
\begin{eqnarray*}
|
||||
A & = & -\frac{19}{9}+\frac{-14}{9} \\
|
||||
B & = & -\frac{-19}{4}-\frac{-17}{6} \\
|
||||
C & = & -5+\frac{17}{10}
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[2]
|
||||
Évaluer les expressions suivantes:
|
||||
\begin{eqnarray*}
|
||||
A = 2x + 7 & \mbox{avec} & x = -9 \\
|
||||
B = 10x(2x + 1) & \mbox{avec} & x = -2
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}[2]
|
||||
Simplifier les expressions suivantes
|
||||
\begin{eqnarray*}
|
||||
I & = & (-3) \times 2x \times (-5) \\
|
||||
J & = & 5 + 6x - 2x - 2x - 9
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
|
||||
\clearpage
|
||||
\begin{Exo}
|
||||
\exo{Bonus}
|
||||
On crée des motifs de la façon suivante:
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.4]{./fig/carre.pdf}
|
||||
\end{center}
|
||||
\begin{enumerate}
|
||||
\item Dessiner le motif 5. Combien y a-t-il de petits carrés?
|
||||
\item Combien de petits carrés y a-t-il dans le motif $n$?
|
||||
\item Combien de petits carrés y a-t-il dans le motif 10 000?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\section*{Table de multiplication}
|
||||
|
||||
\begin{center}
|
||||
|
||||
\begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|}
|
||||
|
||||
\hline
|
||||
Multiplié par & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
|
||||
\hline
|
||||
\hline
|
||||
1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
|
||||
\hline
|
||||
2 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 \\
|
||||
\hline
|
||||
3 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 \\
|
||||
\hline
|
||||
4 & 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 \\
|
||||
\hline
|
||||
5 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 \\
|
||||
\hline
|
||||
6 & 6 & 12 & 18 & 24 & 30 & 36 & 42 & 48 & 54 & 60 \\
|
||||
\hline
|
||||
7 & 7 & 14 & 21 & 28 & 35 & 42 & 49 & 56 & 63 & 70 \\
|
||||
\hline
|
||||
8 & 8 & 16 & 24 & 32 & 40 & 48 & 56 & 64 & 72 & 80 \\
|
||||
\hline
|
||||
9 & 9 & 18 & 27 & 36 & 45 & 54 & 63 & 72 & 81 & 90 \\
|
||||
\hline
|
||||
10 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
|
||||
\end{center}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
219
4e/DS/4eD/12_litt_frac_triCerc/add_frac.py
Normal file
219
4e/DS/4eD/12_litt_frac_triCerc/add_frac.py
Normal file
@@ -0,0 +1,219 @@
|
||||
#!/usr/bin/env python
|
||||
# encoding: utf-8
|
||||
|
||||
from random import randint, random
|
||||
|
||||
|
||||
|
||||
"""Classe which generate randomly fractions sums
|
||||
|
||||
Types of sums
|
||||
|
||||
1 -> b / a + c / a
|
||||
2 -> b / a + c / ka
|
||||
3 -> b / a + e / d
|
||||
4 -> f + b / a or b / a + f
|
||||
|
||||
where:
|
||||
a integer > 2
|
||||
b integer different from 0 (could be coprime with a)
|
||||
c integer different from 0 (could be coprime with a or ka)
|
||||
e integer different from 0 (could be coprime with d)
|
||||
d integer > 2 ( a not divisible by d and d not divisible by a)
|
||||
k integer > 2
|
||||
f integer different from 0
|
||||
|
||||
Signs can be mod
|
||||
|
||||
|
||||
"""
|
||||
|
||||
def a(min_ = 2, max_ = 10):
|
||||
"""Generate randomly a
|
||||
|
||||
:param min_: minimum value for a
|
||||
:param max_: maximum value for a
|
||||
:returns: a value
|
||||
|
||||
"""
|
||||
return randint(min_, max_)
|
||||
|
||||
def k(min_ = 2, max_ = 5):
|
||||
"""Generate randomly k
|
||||
|
||||
:param min_: minimum value for k
|
||||
:param max_: maximum value for k
|
||||
:returns: k value
|
||||
|
||||
"""
|
||||
return randint(min_, max_)
|
||||
|
||||
def b(a_ = 0, min_ = -20, max_ = 20):
|
||||
"""Generate randomly b
|
||||
|
||||
:param a: the value of a if b has to be coprime with a (default 0 which means not necessarily coprime)
|
||||
:param min_: minimum value for b (default -20)
|
||||
:param max_: maximum value for b (default 20)
|
||||
:returns: b value
|
||||
|
||||
"""
|
||||
b_ = 0
|
||||
while b_ == 0 or not coprime:
|
||||
b_ = randint(min_, max_)
|
||||
if a_ == 0:
|
||||
coprime = 1
|
||||
elif b_ != 0:
|
||||
gcd_ = gcd(abs(a_),abs(b_))
|
||||
coprime = (gcd_ == 1)
|
||||
|
||||
return b_
|
||||
|
||||
def c(a_ = 0, k_ = 1, min_ = -20, max_ = 20):
|
||||
"""Generate randomly c
|
||||
|
||||
:param a: the value of a if c has to be coprime with a (default 0 which means not necessarily coprime)
|
||||
:param k: the value of a if c has to be coprime with ak (default 0 which means not necessarily coprime)
|
||||
:param min_: minimum value for c (default -20)
|
||||
:param max_: maximum value for c (default 20)
|
||||
:returns: c value
|
||||
|
||||
"""
|
||||
return b(a_ = a_*k_, min_ = min_, max_ = max_)
|
||||
|
||||
def e(d_ = 0, min_ = -20, max_ = 20):
|
||||
"""Generate randomly e
|
||||
|
||||
:param d: the value of a if e has to be coprime with a (default 0 which means not necessarily coprime)
|
||||
:param min_: minimum value for e (default -20)
|
||||
:param max_: maximum value for e (default 20)
|
||||
:returns: e value
|
||||
|
||||
"""
|
||||
return b(a_ = d_, min_ = min_, max_ = max_)
|
||||
|
||||
def d(a_, min_ = 2, max_ = 10):
|
||||
"""Generate randomly d
|
||||
|
||||
:param a: the value of a
|
||||
:param min_: minimum value for d
|
||||
:param max_: maximum value for d
|
||||
:returns: d value
|
||||
|
||||
"""
|
||||
d_ = randint(min_, max_)
|
||||
div = (not a_ % d_) or (not d_ % a_)
|
||||
while div:
|
||||
d_ = randint(min_, max_)
|
||||
div = (not a_ % d_) or (not d_ % a_)
|
||||
|
||||
return d_
|
||||
|
||||
def f(min_ = -10, max_ = 10):
|
||||
"""Generate randomly f
|
||||
|
||||
:param min_: minimum value for f
|
||||
:param max_: maximum value for f
|
||||
:returns: f value
|
||||
|
||||
"""
|
||||
f_ = randint(min_, max_)
|
||||
while f_ == 0:
|
||||
f_ = randint(min_, max_)
|
||||
|
||||
return f_
|
||||
|
||||
def plusOrMinus(p = 0.5):
|
||||
"""Return plus with prob p and minus otherwise
|
||||
"""
|
||||
pm = random()
|
||||
return "+"*(pm >= p) + "-"*(pm < p)
|
||||
|
||||
def nothingOrMinus(p = 0.5):
|
||||
"""Return nothing with prob p and minus otherwise
|
||||
"""
|
||||
pm = random()
|
||||
return ""*(pm >= p) + "-"*(pm < p)
|
||||
|
||||
def type1():
|
||||
"""@todo: Docstring for type1
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a_ = a()
|
||||
b_ = b(a_=a_)
|
||||
c_ = c(a_=a_)
|
||||
|
||||
return nothingOrMinus() + "\\frac{" + str(b_) + "}{" + str(a_) + "}" + plusOrMinus() + "\\frac{" + str(c_) + "}{" + str(a_) + "}"
|
||||
|
||||
def type2():
|
||||
"""@todo: Docstring for type2
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a_ = a()
|
||||
b_ = b(a_=a_)
|
||||
k_ = k()
|
||||
c_ = c(a_=a_, k_ = k_)
|
||||
|
||||
return nothingOrMinus() + "\\frac{" + str(b_) + "}{" + str(a_) + "}" + plusOrMinus() + "\\frac{" + str(c_) + "}{" + str(k_*a_) + "}"
|
||||
|
||||
def type3():
|
||||
"""@todo: Docstring for type3
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a_ = a()
|
||||
b_ = b(a_=a_)
|
||||
c_ = c(a_=a_)
|
||||
d_ = d(a_)
|
||||
|
||||
return nothingOrMinus() + "\\frac{" + str(b_) + "}{" + str(a_) + "}" + plusOrMinus() + "\\frac{" + str(c_) + "}{" + str(d_) + "}"
|
||||
|
||||
def type4():
|
||||
"""@todo: Docstring for type4
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a_ = a()
|
||||
b_ = b(a_=a_)
|
||||
f_ = f()
|
||||
|
||||
return str(f_) + plusOrMinus() + "\\frac{" + str(b_) + "}{" + str(a_) + "}"
|
||||
|
||||
def gcd(a_, b_):
|
||||
"""Compute gcd(a,b)
|
||||
|
||||
:param a: first number
|
||||
:param b: second number
|
||||
:returns: the gcd
|
||||
|
||||
"""
|
||||
if a_ > b_:
|
||||
c_ = a_ % b_
|
||||
else:
|
||||
c_ = b_ % a_
|
||||
|
||||
if c_ == 0:
|
||||
return min(a_,b_)
|
||||
elif a_ == 1:
|
||||
return b_
|
||||
elif b_ == 1:
|
||||
return a_
|
||||
else:
|
||||
return gcd(min(a_,b_), c_)
|
||||
|
||||
if __name__ == '__main__':
|
||||
# print(a())
|
||||
# print(b())
|
||||
# print(c())
|
||||
# print(d(3))
|
||||
# print(e())
|
||||
# print(f())
|
||||
print(type1())
|
||||
print(type2())
|
||||
print(type3())
|
||||
print(type4())
|
||||
|
||||
# Reglages pour 'vim'
|
||||
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
||||
# cursor: 16 del
|
||||
163
4e/DS/4eD/12_litt_frac_triCerc/call_litt.py
Normal file
163
4e/DS/4eD/12_litt_frac_triCerc/call_litt.py
Normal file
@@ -0,0 +1,163 @@
|
||||
#!/usr/bin/env python
|
||||
# encoding: utf-8
|
||||
|
||||
from random import randint, uniform
|
||||
from math import sqrt
|
||||
from jinja2 import Template
|
||||
|
||||
"""
|
||||
Generate expression for litteral calculous
|
||||
|
||||
3 types of expression (a, b, c != 0, 1)
|
||||
1 -> ax + b and eval for x != -b / a
|
||||
2 -> ax(bx + c) and eval for x != 0 and x != -c / b
|
||||
3 -> ax^2 + b and eval for x != +-sqrt(b/a) (if a and b have same sign)
|
||||
"""
|
||||
|
||||
def gene_type1(min_ = -10, max_ = 10):
|
||||
"""@todo: Docstring for gene_type1
|
||||
|
||||
:param min_: @todo
|
||||
:param max_: @todo
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a, b = 0, 0
|
||||
while (b in [0]) or (a in [0, 1]):
|
||||
a = randint(min_, max_)
|
||||
b = randint(1, max_)
|
||||
|
||||
return "{}x + {}".format(a,b), [-b/a]
|
||||
|
||||
def gene_type2(min_, max_):
|
||||
"""@todo: Docstring for gene_type2
|
||||
|
||||
:param min_: @todo
|
||||
:param max_: @todo
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a, b, c = 0, 0, 0
|
||||
while (a in [0, 1]) or (b in [0, 1]) or c in [0]:
|
||||
a = randint(min_, max_)
|
||||
b = randint(min_, max_)
|
||||
c = randint(1, max_)
|
||||
|
||||
return "{}x({}x + {})".format(a,b,c), [0, -c/b]
|
||||
|
||||
def gene_type3(min_ = -10, max_ = 10):
|
||||
"""@todo: Docstring for gene_type3
|
||||
|
||||
:param min_: @todo
|
||||
:param max_: @todo
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
a, b = 0, 0
|
||||
while (b in [0]) or (a in [0, 1]):
|
||||
a = randint(min_, max_)
|
||||
b = randint(1, max_)
|
||||
|
||||
if a*(-b) > 0:
|
||||
VI = [-sqrt(-b/a), sqrt(-b/a)]
|
||||
else:
|
||||
VI = []
|
||||
|
||||
return "{}x^2 + {}".format(a,b), VI
|
||||
|
||||
def get_goodX(VI, approx = 0, min_ = -10, max_ = 10):
|
||||
"""@todo: Docstring for get_goodX
|
||||
|
||||
:param VI: @todo
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
x = uniform(min_, max_)
|
||||
if approx == 0:
|
||||
x = int(x)
|
||||
else:
|
||||
x = round(x,approx)
|
||||
while x in VI:
|
||||
x = uniform(min_, max_)
|
||||
if approx == 0:
|
||||
x = int(x)
|
||||
else:
|
||||
x = round(x,approx)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
|
||||
def fullExo(min_ = -10 , max_ = 10):
|
||||
"""Generate the whole exo
|
||||
|
||||
:param min_: @todo
|
||||
:param max_: @todo
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
template = Template("""
|
||||
\\begin{equation*}
|
||||
A = {{type1}} \\qquad B = {{type2}} \\qquad C = {{type3}}
|
||||
\\end{equation*}
|
||||
|
||||
Évaluer $A$, $B$ et $C$ pour $x = {{x1}}$ puis $x = {{x2}}$""")
|
||||
|
||||
type1, VI1 = gene_type1(min_, max_)
|
||||
type2, VI2 = gene_type2(min_, max_)
|
||||
type3, VI3 = gene_type3(min_, max_)
|
||||
|
||||
VI = VI1 + VI2 + VI3
|
||||
|
||||
x1, x2 = get_goodX(VI), get_goodX(VI, approx = 1)
|
||||
|
||||
info = {"type1": type1, "type2": type2, "type3": type3, "x1":x1, "x2":x2}
|
||||
|
||||
exo = template.render(**info)
|
||||
|
||||
return exo
|
||||
|
||||
def exp1(min_ = -10, max_ = 10, letter = "A"):
|
||||
"""@todo: Docstring for exp1
|
||||
|
||||
:param min: @todo
|
||||
:param max: @todo
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
exp, VI = gene_type1(min_,max_)
|
||||
x = get_goodX(VI)
|
||||
|
||||
tpl = Template("{{A}} = {{exp}} & \\mbox{avec} & x = {{x}}")
|
||||
|
||||
return tpl.render(A = letter, exp = exp, x = x)
|
||||
|
||||
def exp2(min_ = -10, max_ = 10, letter = "A"):
|
||||
"""@todo: Docstring for exp1
|
||||
|
||||
:param min: @todo
|
||||
:param max: @todo
|
||||
:returns: @todo
|
||||
|
||||
"""
|
||||
exp, VI = gene_type2(min_,max_)
|
||||
x = get_goodX(VI)
|
||||
|
||||
tpl = Template("{{A}} = {{exp}} & \\mbox{avec} & x = {{x}}")
|
||||
|
||||
return tpl.render(A = letter, exp = exp, x = x)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(fullExo())
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# -----------------------------
|
||||
# Reglages pour 'vim'
|
||||
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
||||
# cursor: 16 del
|
||||
BIN
4e/DS/4eD/12_litt_frac_triCerc/fig/carre.pdf
Normal file
BIN
4e/DS/4eD/12_litt_frac_triCerc/fig/carre.pdf
Normal file
Binary file not shown.
293
4e/DS/4eD/12_litt_frac_triCerc/fig/carre.svg
Normal file
293
4e/DS/4eD/12_litt_frac_triCerc/fig/carre.svg
Normal file
@@ -0,0 +1,293 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="carre.svg">
|
||||
<defs
|
||||
id="defs4" />
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.78215874"
|
||||
inkscape:cx="526.18109"
|
||||
inkscape:cy="372.04724"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="1" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title />
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(0,-308.2677)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-4"
|
||||
width="87.994865"
|
||||
height="87.994865"
|
||||
x="62.565792"
|
||||
y="677.79578" />
|
||||
<g
|
||||
id="g3947"
|
||||
transform="translate(14.063641,-7.6710771)">
|
||||
<g
|
||||
transform="matrix(1.1508674,0,0,1.1508674,101.20168,130.22774)"
|
||||
id="g3822"
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="105.65327"
|
||||
y="475.78723" />
|
||||
<g
|
||||
id="g3794"
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none">
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="259.1832"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-1"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="182.4604"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-7"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
id="g3794-9"
|
||||
transform="matrix(0,-1.1508674,1.1508674,0,-236.42714,975.77835)"
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-1-4"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="259.1832"
|
||||
y="475.78723" />
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-7-8"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="182.4604"
|
||||
y="475.78723" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3990"
|
||||
transform="matrix(1.1508674,0,0,1.1508674,184.02686,94.312645)">
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
transform="translate(329.83303,30.931413)"
|
||||
id="g3822-2">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-45"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="105.65327"
|
||||
y="475.78723" />
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3794-5">
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="259.1832"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-1-1"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="182.4604"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-7-7"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3794-9-1"
|
||||
transform="matrix(0,-1,1,0,36.46403,765.63865)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-1-4-1"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="259.1832"
|
||||
y="475.78723" />
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-7-8-5"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="182.4604"
|
||||
y="475.78723" />
|
||||
</g>
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3822-27"
|
||||
transform="translate(406.32072,30.931416)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-6"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="105.65327"
|
||||
y="475.78723" />
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3794-1">
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="259.1832"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-1-42"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="182.4604"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-7-3"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3822-27-2"
|
||||
transform="translate(252.17588,30.133169)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-6-2"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="105.65327"
|
||||
y="475.78723" />
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3794-1-1">
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="259.1832"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-1-42-6"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="182.4604"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-7-3-8"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3822-27-2-5"
|
||||
transform="matrix(0,-1,1,0,36.218278,689.10708)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="rect3753-6-2-7"
|
||||
width="76.459602"
|
||||
height="76.459602"
|
||||
x="105.65327"
|
||||
y="475.78723" />
|
||||
<g
|
||||
style="stroke-width:4.34454918;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="g3794-1-1-6">
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="259.1832"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-1-42-6-1"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
y="475.78723"
|
||||
x="182.4604"
|
||||
height="76.459602"
|
||||
width="76.459602"
|
||||
id="rect3753-7-3-8-8"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.34454918;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:57.15011597px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
|
||||
x="7.0528221"
|
||||
y="848.96002"
|
||||
id="text4050"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4052"
|
||||
x="7.0528221"
|
||||
y="848.96002">Motif 0</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:57.15011597px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
|
||||
x="270.43103"
|
||||
y="848.96002"
|
||||
id="text4054"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
x="270.43103"
|
||||
y="848.96002"
|
||||
id="tspan3910">Motif 1</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:57.15011597px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
|
||||
x="718.33698"
|
||||
y="848.96002"
|
||||
id="text4058"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4060"
|
||||
x="718.33698"
|
||||
y="848.96002">Motif 2</tspan></text>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 11 KiB |
BIN
4e/DS/4eD/12_litt_frac_triCerc/fig/rectangle.pdf
Normal file
BIN
4e/DS/4eD/12_litt_frac_triCerc/fig/rectangle.pdf
Normal file
Binary file not shown.
187
4e/DS/4eD/12_litt_frac_triCerc/fig/rectangle.svg
Normal file
187
4e/DS/4eD/12_litt_frac_triCerc/fig/rectangle.svg
Normal file
@@ -0,0 +1,187 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="210mm"
|
||||
height="297mm"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="Nouveau document 1">
|
||||
<defs
|
||||
id="defs4" />
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.55304154"
|
||||
inkscape:cx="121.59296"
|
||||
inkscape:cy="538.02339"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1">
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Serif;-inkscape-font-specification:Droid Serif"
|
||||
x="144.47932"
|
||||
y="439.92328"
|
||||
id="text3862"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3864"
|
||||
x="144.47932"
|
||||
y="439.92328" /></text>
|
||||
<g
|
||||
id="g3878"
|
||||
transform="matrix(1.5907865,0,0,1.5907865,-177.89552,-201.63966)">
|
||||
<rect
|
||||
y="235.22206"
|
||||
x="201.77069"
|
||||
height="448.11258"
|
||||
width="297.12933"
|
||||
id="rect3753"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.31666851;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<rect
|
||||
y="234.30737"
|
||||
x="200.856"
|
||||
height="449.94196"
|
||||
width="98.250458"
|
||||
id="rect3753-8"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.48729825;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<rect
|
||||
y="234.30737"
|
||||
x="400.2081"
|
||||
height="449.94196"
|
||||
width="98.250458"
|
||||
id="rect3753-8-8"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.48729825;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3791"
|
||||
y="220.00786"
|
||||
x="161.10085"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="220.00786"
|
||||
x="161.10085"
|
||||
id="tspan3793"
|
||||
sodipodi:role="line">A</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3795"
|
||||
y="219.94926"
|
||||
x="516.54553"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="219.94926"
|
||||
x="516.54553"
|
||||
id="tspan3797"
|
||||
sodipodi:role="line">B</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3799"
|
||||
y="717.37476"
|
||||
x="517.10217"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="717.37476"
|
||||
x="517.10217"
|
||||
id="tspan3801"
|
||||
sodipodi:role="line">C</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3803"
|
||||
y="717.36499"
|
||||
x="158.85475"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="717.36499"
|
||||
x="158.85475"
|
||||
id="tspan3805"
|
||||
sodipodi:role="line">D</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3807"
|
||||
y="214.89355"
|
||||
x="338.82318"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Serif;-inkscape-font-specification:Droid Serif"
|
||||
xml:space="preserve"><tspan
|
||||
y="214.89355"
|
||||
x="338.82318"
|
||||
id="tspan3809"
|
||||
sodipodi:role="line">x</tspan></text>
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3811"
|
||||
d="m 356.21194,221.0503 -17.77843,30.79314"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3811-2"
|
||||
d="m 458.22254,221.0503 -17.77843,30.79314"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3811-5"
|
||||
d="m 258.87045,221.0503 -17.77843,30.79314"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3811-9"
|
||||
d="m 359.15024,669.00048 -17.77843,30.79314"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3811-2-2"
|
||||
d="m 461.16084,669.00048 -17.77843,30.79314"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3811-5-8"
|
||||
d="m 261.80875,669.00048 -17.77843,30.79314"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3866"
|
||||
y="459.10196"
|
||||
x="154.70795"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="459.10196"
|
||||
x="154.70795"
|
||||
id="tspan3868"
|
||||
sodipodi:role="line">5</tspan></text>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 8.0 KiB |
41
4e/DS/4eD/12_litt_frac_triCerc/index.rst
Normal file
41
4e/DS/4eD/12_litt_frac_triCerc/index.rst
Normal file
@@ -0,0 +1,41 @@
|
||||
Notes sur 12 litt frac triCerc
|
||||
##############################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: DS
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers 12_litt_frac_triCerc_2_.pdf <12_litt_frac_triCerc_2_.pdf>`_
|
||||
|
||||
`Lien vers 12_litt_frac_triCerc.pdf <12_litt_frac_triCerc.pdf>`_
|
||||
|
||||
`Lien vers 12_litt_frac_triCerc_1.pdf <12_litt_frac_triCerc_1.pdf>`_
|
||||
|
||||
`Lien vers 12_litt_frac_triCerc_1.tex <12_litt_frac_triCerc_1.tex>`_
|
||||
|
||||
`Lien vers 12_litt_frac_triCerc_2.tex <12_litt_frac_triCerc_2.tex>`_
|
||||
|
||||
`Lien vers 12_litt_frac_triCerc_1_.tex <12_litt_frac_triCerc_1_.tex>`_
|
||||
|
||||
`Lien vers number_rotation.py <number_rotation.py>`_
|
||||
|
||||
`Lien vers 12_litt_frac_triCerc_2_.tex <12_litt_frac_triCerc_2_.tex>`_
|
||||
|
||||
`Lien vers 12_litt_frac_triCerc.tex <12_litt_frac_triCerc.tex>`_
|
||||
|
||||
`Lien vers call_litt.py <call_litt.py>`_
|
||||
|
||||
`Lien vers 12_litt_frac_triCerc_2.pdf <12_litt_frac_triCerc_2.pdf>`_
|
||||
|
||||
`Lien vers 12_litt_frac_triCerc_1_.pdf <12_litt_frac_triCerc_1_.pdf>`_
|
||||
|
||||
`Lien vers add_frac.py <add_frac.py>`_
|
||||
|
||||
`Lien vers fig/rectangle.pdf <fig/rectangle.pdf>`_
|
||||
|
||||
`Lien vers fig/carre.pdf <fig/carre.pdf>`_
|
||||
90
4e/DS/4eD/12_litt_frac_triCerc/number_rotation.py
Executable file
90
4e/DS/4eD/12_litt_frac_triCerc/number_rotation.py
Executable file
@@ -0,0 +1,90 @@
|
||||
#!/usr/bin/env python
|
||||
# encoding: utf-8
|
||||
|
||||
import jinja2, random, os
|
||||
import sys
|
||||
import optparse
|
||||
|
||||
def randfloat(approx = 1, low = 0, up = 10):
|
||||
""" return a random number between low and up with approx floating points """
|
||||
ans = random.random()
|
||||
ans = ans*(up - low) + low
|
||||
ans = round(ans, approx)
|
||||
return ans
|
||||
|
||||
random.randfloat = randfloat
|
||||
|
||||
def gaussRandomlist(mu = 0, sigma = 1, size = 10, manip = lambda x:x):
|
||||
""" return a list of a gaussian sample """
|
||||
ans = []
|
||||
for i in range(size):
|
||||
ans += [manip(random.gauss(mu,sigma))]
|
||||
return ans
|
||||
|
||||
random.gaussRandomlist = gaussRandomlist
|
||||
|
||||
def gaussRandomlist_strInt(mu = 0, sigma = 1, size = 10):
|
||||
return gaussRandomlist(mu, sigma, size, manip = lambda x: str(int(x)))
|
||||
|
||||
random.gaussRandomlist_strInt = gaussRandomlist_strInt
|
||||
|
||||
# ------------------
|
||||
# Spécial exo!
|
||||
|
||||
from add_frac import type1, type3, type4
|
||||
exo = {"frac1": type1, "frac3": type3, "frac4": type4}
|
||||
|
||||
from call_litt import exp1, exp2
|
||||
exo["exp1"] = exp1
|
||||
exo["exp2"] = exp2
|
||||
|
||||
|
||||
report_renderer = jinja2.Environment(
|
||||
block_start_string = '%{',
|
||||
block_end_string = '%}',
|
||||
variable_start_string = '%{{',
|
||||
variable_end_string = '%}}',
|
||||
loader = jinja2.FileSystemLoader(os.path.abspath('.'))
|
||||
)
|
||||
|
||||
def main(options):
|
||||
template = report_renderer.get_template(options.template)
|
||||
|
||||
if options.output:
|
||||
output_basename = options.output
|
||||
else:
|
||||
tpl_base = os.path.splitext(options.template)[0]
|
||||
output_basename = tpl_base + "_"
|
||||
|
||||
|
||||
for subj in range(options.num_subj):
|
||||
subj = subj+1
|
||||
dest = output_basename + str(subj) + '.tex'
|
||||
with open( dest, 'w') as f:
|
||||
f.write(template.render(random = random, infos = {"subj" : subj}, exo = exo))
|
||||
os.system("pdflatex " + dest)
|
||||
|
||||
if not options.dirty:
|
||||
os.system("rm *.aux *.log")
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
|
||||
parser = optparse.OptionParser()
|
||||
parser.add_option("-t","--tempalte",action="store",type="string",dest="template", help="File with template")
|
||||
parser.add_option("-o","--output",action="store",type="string",dest="output",help="Base name for output (without .tex or any extension))")
|
||||
parser.add_option("-n","--number_subjects", action="store",type="int", dest="num_subj", default = 2, help="The number of subjects to make")
|
||||
parser.add_option("-d","--dirty", action="store_true", dest="dirty", help="Do not clean after compilation")
|
||||
|
||||
(options, args) = parser.parse_args()
|
||||
|
||||
if not options.template:
|
||||
print("I need a template!")
|
||||
sys.exit(0)
|
||||
|
||||
main(options)
|
||||
|
||||
# -----------------------------
|
||||
# Reglages pour 'vim'
|
||||
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
||||
# cursor: 16 del
|
||||
Reference in New Issue
Block a user