Import work from year 2013-2014
BIN
4e/Geometrie/Thales/activite_decouverte/act_dec.pdf
Normal file
143
4e/Geometrie/Thales/activite_decouverte/act_dec.tex
Normal file
@@ -0,0 +1,143 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{calc}
|
||||
|
||||
% Title Page
|
||||
\title{Thalès - Travail de groupe}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{fancy}
|
||||
|
||||
Dans tous les dessins suivants, $ABC$ et $AMN$ sont deux triangles tels que $M$ est un point de $[AB]$, $N$ un point de $[AC]$ et $(MN)//(BC)$. Dans chacunes des figures, les longueurs de quatres côtés sont données. (Les mesures sur les dessins ne sont pas respectées)
|
||||
|
||||
\textbf{Conjecturer les valeurs des longueurs des deux cotés manquants pour remplir les tableaux des longueurs.} Justifier quand c'est possible les valeurs trouvées.
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{Cas 1}
|
||||
|
||||
\begin{tikzpicture}
|
||||
\coordinate (A) at (0,0);
|
||||
\coordinate (M) at (3,0);
|
||||
\coordinate (B) at (6,0);
|
||||
\coordinate (C) at (6,4);
|
||||
\coordinate (N) at (3,2);
|
||||
|
||||
\draw (A) node [left] {$A$}
|
||||
-- (M) node [below] {$M$} node[midway, below] {$4$}
|
||||
-- (B) node [right] {$B$}
|
||||
-- (C) node [right] {$C$}
|
||||
-- (N) node [above] {$N$}
|
||||
-- (A) node [midway, sloped, above] {5};
|
||||
|
||||
\draw (N) -- (M) node[midway, right] {3};
|
||||
\draw[<->] ($(A)+(0,-0.5)$) -- ($(B) + (0,-0.5)$) node [midway, below] {$8$};
|
||||
|
||||
\end{tikzpicture}
|
||||
|
||||
\begin{tabular}{|c|*{3}{p{2cm}|}}
|
||||
\hline
|
||||
Triangle $AMN$ & AM = & AN = & MN = \\
|
||||
\hline
|
||||
Triangle $ABC$ & AB = & AC = & BC = \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\item \textbf{Cas 2}
|
||||
|
||||
\begin{tikzpicture}
|
||||
\coordinate (A) at (0,0);
|
||||
\coordinate (M) at (2.3,0);
|
||||
\coordinate (B) at (9.2,0);
|
||||
\coordinate (C) at (8,4);
|
||||
\coordinate (N) at (2,1);
|
||||
|
||||
\draw (A) node [left] {$A$}
|
||||
-- (M) node [below] {$M$} node[midway, below] {$1$}
|
||||
-- (B) node [right] {$B$}
|
||||
-- (C) node [right] {$C$}
|
||||
-- (N) node [above] {$N$}
|
||||
-- (A) node [midway, sloped, above] {5};
|
||||
|
||||
\draw (N) -- (M) node[midway, right] {3};
|
||||
\draw[<->] ($(A)+(0,-0.5)$) -- ($(B) + (0,-0.5)$) node [midway, below] {4};
|
||||
\draw (A) --++ (2.3,0) --++ (2.3,0) node {$|$} --++ (2.3,0) node {$|$};
|
||||
|
||||
\end{tikzpicture}
|
||||
|
||||
\begin{tabular}{|c|*{3}{p{2cm}|}}
|
||||
\hline
|
||||
Triangle $AMN$ & AM = & AN = & MN = \\
|
||||
\hline
|
||||
Triangle $ABC$ & AB = & AC = & BC = \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\item \textbf{Cas 3}
|
||||
|
||||
\begin{tikzpicture}
|
||||
\coordinate (A) at (0,0);
|
||||
\coordinate (M) at (3,0);
|
||||
\coordinate (B) at (6,0);
|
||||
\coordinate (C) at (6.8,4);
|
||||
\coordinate (N) at (3.4,2);
|
||||
|
||||
\draw (A) node [left] {$A$}
|
||||
-- (M) node [below] {$M$} node[midway, below] {$4$}
|
||||
-- (B) node [right] {$B$}
|
||||
-- (C) node [right] {$C$}
|
||||
-- (N) node [above] {$N$}
|
||||
-- (A) node [midway, sloped, above] {5};
|
||||
|
||||
\draw (N) -- (M) node[midway, right] {4.4};
|
||||
\draw[<->] ($(A)+(-0.5,+0.5)$) -- ($(C) + (0,+0.75)$) node [midway, above, sloped] {$10$};
|
||||
|
||||
\end{tikzpicture}
|
||||
|
||||
\begin{tabular}{|c|*{3}{p{2cm}|}}
|
||||
\hline
|
||||
Triangle $AMN$ & AM = & AN = & MN = \\
|
||||
\hline
|
||||
Triangle $ABC$ & AB = & AC = & BC = \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\item \textbf{Cas 4}
|
||||
|
||||
\begin{tikzpicture}
|
||||
\coordinate (A) at (0,0);
|
||||
\coordinate (M) at (3,0);
|
||||
\coordinate (B) at (6,0);
|
||||
\coordinate (C) at (6,4);
|
||||
\coordinate (N) at (3,2);
|
||||
|
||||
\draw (A) node [left] {$A$}
|
||||
-- (M) node [below] {$M$} node[midway, below] {$4$}
|
||||
-- (B) node [right] {$B$}
|
||||
-- (C) node [right] {$C$} node [midway, right] {15}
|
||||
-- (N) node [above] {$N$}
|
||||
-- (A) node [midway, sloped, above] {5};
|
||||
|
||||
\draw (N) -- (M) node[midway, right] {3};
|
||||
|
||||
\end{tikzpicture}
|
||||
|
||||
\begin{tabular}{|c|*{3}{p{2cm}|}}
|
||||
\hline
|
||||
Triangle $AMN$ & AM = & AN = & MN = \\
|
||||
\hline
|
||||
Triangle $ABC$ & AB = & AC = & BC = \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{itemize}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/Geometrie/Thales/activite_decouverte/act_dec_corr.pdf
Normal file
146
4e/Geometrie/Thales/activite_decouverte/act_dec_corr.tex
Normal file
@@ -0,0 +1,146 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{calc}
|
||||
|
||||
% Title Page
|
||||
\title{Thalès - Travail de groupe}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{fancy}
|
||||
|
||||
Dans tous les dessins suivants, $ABC$ et $AMN$ sont deux triangles tels que $M$ est un point de $[AB]$, $N$ un point de $[AC]$ et $(MN)//(BC)$. Dans chacunes des figures, les longueurs de quatres côtés sont données. (Les mesures sur les dessins ne sont pas respectées)
|
||||
|
||||
\textbf{Conjecturer les valeurs des longueurs des deux cotés manquants pour remplir les tableaux des longueurs.} Justifier quand c'est possible les valeurs trouvées.
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{Cas 1}
|
||||
|
||||
\begin{tikzpicture}
|
||||
\coordinate (A) at (0,0);
|
||||
\coordinate (M) at (3,0);
|
||||
\coordinate (B) at (6,0);
|
||||
\coordinate (C) at (6,4);
|
||||
\coordinate (N) at (3,2);
|
||||
|
||||
\draw (A) node [left] {$A$}
|
||||
-- (M) node [below] {$M$} node[midway, below] {$4$}
|
||||
-- (B) node [right] {$B$}
|
||||
-- (C) node [right] {$C$}
|
||||
-- (N) node [above] {$N$}
|
||||
-- (A) node [midway, sloped, above] {5};
|
||||
|
||||
\draw (N) -- (M) node[midway, right] {3};
|
||||
\draw[<->] ($(A)+(0,-0.5)$) -- ($(B) + (0,-0.5)$) node [midway, below] {$8$};
|
||||
|
||||
\end{tikzpicture}
|
||||
|
||||
\begin{tabular}{|c|*{3}{p{2cm}|}}
|
||||
\hline
|
||||
Triangle $AMN$ & AM = \color{blue}{4} & AN = \color{blue}{5} & MN = \color{blue}{3} \\
|
||||
\hline
|
||||
Triangle $ABC$ & AB = \color{blue}{8} & AC = \color{red}{10} & BC = \color{red}{6} \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\item \textbf{Cas 2}
|
||||
|
||||
\begin{tikzpicture}
|
||||
\coordinate (A) at (0,0);
|
||||
\coordinate (M) at (2.3,0);
|
||||
\coordinate (B) at (9.2,0);
|
||||
\coordinate (C) at (8,4);
|
||||
\coordinate (N) at (2,1);
|
||||
|
||||
\draw (A) node [left] {$A$}
|
||||
-- (M) node [below] {$M$} node[midway, below] {$1$}
|
||||
-- (B) node [right] {$B$}
|
||||
-- (C) node [right] {$C$}
|
||||
-- (N) node [above] {$N$}
|
||||
-- (A) node [midway, sloped, above] {5};
|
||||
|
||||
\draw (N) -- (M) node[midway, right] {3};
|
||||
\draw[<->] ($(A)+(0,-0.5)$) -- ($(B) + (0,-0.5)$) node [midway, below] {4};
|
||||
\draw (A) --++ (2.3,0) --++ (2.3,0) node {$|$} --++ (2.3,0) node {$|$};
|
||||
|
||||
\end{tikzpicture}
|
||||
|
||||
\begin{tabular}{|c|*{3}{p{2cm}|}}
|
||||
\hline
|
||||
Triangle $AMN$ & AM = \color{blue}{1} & AN = \color{blue}{5} & MN = \color{blue}{3} \\
|
||||
\hline
|
||||
Triangle $ABC$ & AB = \color{blue}{4} & AC = \color{red}{20} & BC = \color{red}{12} \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\item \textbf{Cas 3}
|
||||
|
||||
\begin{tikzpicture}
|
||||
\coordinate (A) at (0,0);
|
||||
\coordinate (M) at (3,0);
|
||||
\coordinate (B) at (6,0);
|
||||
\coordinate (C) at (6.8,4);
|
||||
\coordinate (N) at (3.4,2);
|
||||
|
||||
\draw (A) node [left] {$A$}
|
||||
-- (M) node [below] {$M$} node[midway, below] {$4$}
|
||||
-- (B) node [right] {$B$}
|
||||
-- (C) node [right] {$C$}
|
||||
-- (N) node [above] {$N$}
|
||||
-- (A) node [midway, sloped, above] {5};
|
||||
|
||||
\draw (N) -- (M) node[midway, right] {4.4};
|
||||
\draw[<->] ($(A)+(-0.5,+0.5)$) -- ($(C) + (0,+0.75)$) node [midway, above, sloped] {$15$};
|
||||
|
||||
\end{tikzpicture}
|
||||
|
||||
|
||||
\begin{tabular}{|c|*{3}{p{2cm}|}}
|
||||
\hline
|
||||
Triangle $AMN$ & AM = \color{blue}{4} & AN = \color{blue}{5} & MN = \color{blue}{4.4} \\
|
||||
\hline
|
||||
Triangle $ABC$ & AB = \color{red}{12} & AC = \color{blue}{15} & BC = \color{red}{13.2} \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\item \textbf{Cas 4}
|
||||
|
||||
\begin{tikzpicture}
|
||||
\coordinate (A) at (0,0);
|
||||
\coordinate (M) at (3,0);
|
||||
\coordinate (B) at (6,0);
|
||||
\coordinate (C) at (6,4);
|
||||
\coordinate (N) at (3,2);
|
||||
|
||||
\draw (A) node [left] {$A$}
|
||||
-- (M) node [below] {$M$} node[midway, below] {$4$}
|
||||
-- (B) node [right] {$B$}
|
||||
-- (C) node [right] {$C$} node [midway, right] {15}
|
||||
-- (N) node [above] {$N$}
|
||||
-- (A) node [midway, sloped, above] {5};
|
||||
|
||||
\draw (N) -- (M) node[midway, right] {3};
|
||||
|
||||
\end{tikzpicture}
|
||||
|
||||
\begin{tabular}{|c|*{3}{p{2cm}|}}
|
||||
\hline
|
||||
Triangle $AMN$ & AM = \color{blue}{4} & AN = \color{blue}{5} & MN = \color{blue}{3} \\
|
||||
\hline
|
||||
Triangle $ABC$ & AB = \color{red}{12} & AC = \color{red}{15} & BC = \color{blue}{15} \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\end{itemize}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
19
4e/Geometrie/Thales/activite_decouverte/index.rst
Normal file
@@ -0,0 +1,19 @@
|
||||
Notes sur une activité decouverte du théorème de Thales
|
||||
#######################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Geometrie, Exo
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers act_dec_corr.tex <act_dec_corr.tex>`_
|
||||
|
||||
`Lien vers act_dec.tex <act_dec.tex>`_
|
||||
|
||||
`Lien vers act_dec_corr.pdf <act_dec_corr.pdf>`_
|
||||
|
||||
`Lien vers act_dec.pdf <act_dec.pdf>`_
|
||||
BIN
4e/Geometrie/Thales/ecran/ecran.pdf
Normal file
129
4e/Geometrie/Thales/ecran/ecran.tex
Normal file
@@ -0,0 +1,129 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{calc}
|
||||
|
||||
% Title Page
|
||||
\title{Thalès- Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{fancy}
|
||||
|
||||
\begin{Exo}
|
||||
Lors d'un spectacle d'ombre chinoise, l'acteur place ses mains à 1m de la lampe et l'ombre de ses mains se projette sur l'écran. On considère que ses mains, ensembles, mesurent 40cm.
|
||||
\begin{enumerate}
|
||||
\item On place l'écran à 2m comme sur le dessin ci-dessous. Quel sera la taille de l'ombre sur l'écran?
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\coordinate (A) at (0,0);
|
||||
\coordinate (B) at (2,0);
|
||||
\coordinate (C) at (4,0);
|
||||
\coordinate (D) at (4,1.5);
|
||||
\coordinate (E) at (2,0.75);
|
||||
|
||||
\draw (A) -- (B)
|
||||
-- (C)
|
||||
-- (D) node [midway, right] {Ombre}
|
||||
-- (E)
|
||||
-- (A);
|
||||
\draw (B) -- (E) node [above] {Mains};
|
||||
|
||||
\draw[<->] ($(A)+(0,-0.5)$) -- ($(B) + (0,-0.5)$) node [midway, above] {$1m$};
|
||||
\draw[<->] ($(A)+(0,-0.75)$) -- ($(C) + (0,-0.75)$) node [midway, above, near end] {$2m$};
|
||||
|
||||
\end{tikzpicture}
|
||||
|
||||
\end{center}
|
||||
\item On effectue plusieurs tests où l'on place l'écran à différentes distances. Les dessins suivants sont à l'échelle 1/50 ($1cm \Leftrightarrow 50cm$) . Dans chacun des cas, mesurer la taille de l'ombre.
|
||||
|
||||
\begin{itemize}
|
||||
\item Écran placé à 3m
|
||||
|
||||
\begin{tikzpicture}
|
||||
\coordinate (A) at (0,0);
|
||||
\coordinate (B) at (2,0);
|
||||
\coordinate (C) at (6,0);
|
||||
\coordinate (D) at (6,2.25);
|
||||
\coordinate (E) at (2,0.75);
|
||||
|
||||
\draw (A) -- (B)
|
||||
-- (C)
|
||||
-- (D)
|
||||
-- (E)
|
||||
-- (A);
|
||||
\draw (B) -- (E);
|
||||
|
||||
\end{tikzpicture}
|
||||
\item Écran placé à 4m
|
||||
|
||||
\begin{tikzpicture}
|
||||
\coordinate (A) at (0,0);
|
||||
\coordinate (B) at (2,0);
|
||||
\coordinate (C) at (8,0);
|
||||
\coordinate (D) at (8,3);
|
||||
\coordinate (E) at (2,0.75);
|
||||
|
||||
\draw (A) -- (B)
|
||||
-- (C)
|
||||
-- (D)
|
||||
-- (E)
|
||||
-- (A);
|
||||
\draw (B) -- (E);
|
||||
|
||||
\end{tikzpicture}
|
||||
\item Écran placé à 5m
|
||||
|
||||
\begin{tikzpicture}
|
||||
\coordinate (A) at (0,0);
|
||||
\coordinate (B) at (2,0);
|
||||
\coordinate (C) at (10,0);
|
||||
\coordinate (D) at (10,3.75);
|
||||
\coordinate (E) at (2,0.75);
|
||||
|
||||
\draw (A) -- (B)
|
||||
-- (C)
|
||||
-- (D)
|
||||
-- (E)
|
||||
-- (A);
|
||||
\draw (B) -- (E);
|
||||
|
||||
\end{tikzpicture}
|
||||
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\item Quel sera la taille de l'ombre si l'on place l'écran aux distances suivantes:
|
||||
\begin{itemize}
|
||||
\item 7m:
|
||||
\item 10m:
|
||||
\item 20m:
|
||||
\end{itemize}
|
||||
\item Avec les distances trouvées aux questions précédentes, compléter le tableau suivant.
|
||||
|
||||
\begin{tabular}{|c|*{7}{p{0.7cm}|}}
|
||||
\hline
|
||||
Distance de l'écran & 2 & 3 & 4 & 5 & 7 & 10 & 20 \\
|
||||
\hline
|
||||
Taille de l'ombre & & & & & & & \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\item Est-ce que le tableau est un tableau de proportionnalité?
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\end{Exo}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
15
4e/Geometrie/Thales/ecran/index.rst
Normal file
@@ -0,0 +1,15 @@
|
||||
Notes sur un exercice autour du théorème de Thales
|
||||
##################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Geometrie, Exo
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers ecran.pdf <ecran.pdf>`_
|
||||
|
||||
`Lien vers ecran.tex <ecran.tex>`_
|
||||
BIN
4e/Geometrie/Thales/exo/exo1.pdf
Normal file
94
4e/Geometrie/Thales/exo/exo1.tex
Normal file
@@ -0,0 +1,94 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{calc}
|
||||
|
||||
% Title Page
|
||||
\title{Thalès- Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{fancy}
|
||||
|
||||
\textbf{Calcul de la hauteur d'une pyramide, une légende}
|
||||
\includegraphics[scale=0.45]{./fig/pyramide}
|
||||
|
||||
\vfill
|
||||
|
||||
Dimensions observées par Thalès (en coudées, 1 coudées $\approx$ 52.5cm)
|
||||
\begin{itemize}
|
||||
\item Côté de la pyramide: 442 coudées
|
||||
\item Taille de l'ombre de la pyramide: 404 coudées.
|
||||
\item Taille du baton: 5 coudées.
|
||||
\item Taille de l'ombre du baton: 11 coudées.
|
||||
\end{itemize}
|
||||
|
||||
\textbf{La légende dit que, grâce à ces informations, Thalès, lors d'un voyage en Égypte, a réussi à mesurer la hauteur de la pyramide.}
|
||||
|
||||
\vfill
|
||||
\eject
|
||||
|
||||
\begin{Exo}
|
||||
Calculer les longueurs manquantes sur les dessins suivants.
|
||||
\begin{enumerate}
|
||||
\item
|
||||
\begin{minipage}{0.2\textwidth}
|
||||
\includegraphics[scale=0.2]{./fig/ABCMN.pdf}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.15\textwidth}
|
||||
\begin{itemize}
|
||||
\item $(BC) // (MN)$
|
||||
\item $AN = 3$
|
||||
\item $AC = 6$
|
||||
\item $MN = 4$
|
||||
\item $AM = 5$
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
|
||||
\item
|
||||
\begin{minipage}{0.2\textwidth}
|
||||
\includegraphics[scale=0.2]{./fig/IJKLM.pdf}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.2\textwidth}
|
||||
\begin{itemize}
|
||||
\item $(JK) // (LM)$
|
||||
\item $IM = 6$
|
||||
\item $IL = 6$
|
||||
\item $LM = 5$
|
||||
\item $JK = 9$
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
|
||||
\item
|
||||
\begin{minipage}{0.2\textwidth}
|
||||
\includegraphics[scale=0.2]{./fig/USTXY.pdf}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.2\textwidth}
|
||||
\begin{itemize}
|
||||
\item $(YX) // (ST)$
|
||||
\item $US = 10$
|
||||
\item $ST = 11$
|
||||
\item $UT = 5$
|
||||
\item $YX = 10$
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
\end{enumerate}
|
||||
|
||||
Le coefficent de proportionnalité des longueurs des triangles est appelé rapport de réduction (ou d'agrandissement). Calculer ce rapport pour tous les triangles.
|
||||
|
||||
\end{Exo}
|
||||
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/Geometrie/Thales/exo/exo2.pdf
Normal file
92
4e/Geometrie/Thales/exo/exo2.tex
Normal file
@@ -0,0 +1,92 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{calc}
|
||||
|
||||
% Title Page
|
||||
\title{Thalès- Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{fancy}
|
||||
|
||||
\textbf{Évacuation d'un téléphérique}
|
||||
Le téléphérique qui lie Chamonix au sommet du Mont Blanc va être construit. Le constructeur pense avant tout à la sécurité. Il veut installer une corde dans le téléphérique pour évacuer les personnes en cas de panne. \textbf{De quelle longueur devra être cette corde?}
|
||||
\includegraphics[scale=0.45]{./fig/Telepherique}
|
||||
|
||||
\vfill
|
||||
|
||||
Dimensions enregistrées pour les travaux:
|
||||
\begin{itemize}
|
||||
\item Différence d'altitude entre Chamonix et le Mont Blanc: 3815m.
|
||||
\item Longueur du téléphérique: 10km.
|
||||
\item Distance parcourue par le téléphérique avant d'atteindre le pied de la montagne: 3km
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
\eject
|
||||
|
||||
\begin{Exo}
|
||||
Calculer les longueurs manquantes sur les dessins suivants.
|
||||
\begin{enumerate}
|
||||
\item
|
||||
\begin{minipage}{0.2\textwidth}
|
||||
\includegraphics[scale=0.2]{./fig/ABCMN.pdf}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.15\textwidth}
|
||||
\begin{itemize}
|
||||
\item $(BC) // (MN)$
|
||||
\item $AN = 3$
|
||||
\item $AC = 6$
|
||||
\item $MN = 4$
|
||||
\item $AM = 5$
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
|
||||
\item
|
||||
\begin{minipage}{0.2\textwidth}
|
||||
\includegraphics[scale=0.2]{./fig/IJKLM.pdf}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.2\textwidth}
|
||||
\begin{itemize}
|
||||
\item $(JK) // (LM)$
|
||||
\item $IM = 6$
|
||||
\item $IL = 6$
|
||||
\item $LM = 5$
|
||||
\item $JK = 9$
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
|
||||
\item
|
||||
\begin{minipage}{0.2\textwidth}
|
||||
\includegraphics[scale=0.2]{./fig/USTXY.pdf}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.2\textwidth}
|
||||
\begin{itemize}
|
||||
\item $(YX) // (ST)$
|
||||
\item $US = 10$
|
||||
\item $ST = 11$
|
||||
\item $UT = 5$
|
||||
\item $YX = 10$
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
\end{enumerate}
|
||||
|
||||
Le coefficent de proportionnalité des longueurs des triangles est appelé rapport de réduction (ou d'agrandissement). Calculer ce rapport pour tous les triangles.
|
||||
|
||||
\end{Exo}
|
||||
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/Geometrie/Thales/exo/exo3.pdf
Normal file
67
4e/Geometrie/Thales/exo/exo3.tex
Normal file
@@ -0,0 +1,67 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{calc}
|
||||
|
||||
% Title Page
|
||||
\title{Thalès- Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{fancy}
|
||||
|
||||
\begin{Exo}
|
||||
|
||||
\textbf{Évacuation d'un téléphérique}
|
||||
|
||||
Le téléphérique qui lie Chamonix au sommet du Mont Blanc va être construit. Le constructeur pense avant tout à la sécurité. Il veut installer une corde dans le téléphérique pour évacuer les personnes en cas de panne. \textbf{De quelle longueur devra être cette corde?}
|
||||
\includegraphics[scale=0.45]{./fig/Telepherique}
|
||||
|
||||
\vfill
|
||||
|
||||
Dimensions enregistrées pour les travaux:
|
||||
\begin{itemize}
|
||||
\item Différence d'altitude entre Chamonix et le Mont Blanc: 3815m.
|
||||
\item Longueur du téléphérique: 10km.
|
||||
\item Distance parcourue par le téléphérique avant d'atteindre le pied de la montagne: 3km
|
||||
\end{itemize}
|
||||
\end{Exo}
|
||||
|
||||
\vfill
|
||||
\eject
|
||||
|
||||
\begin{Exo}
|
||||
Inspiré par l'expérience de Thalès, Tom en voyage à Pise veut mesurer la tour penchée grâce à son ombre. Il se renseigne et apprend qu'elle est penchée de $4,19^o$ comme sur le dessin suivant:
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.4]{./fig/ombre_pise}
|
||||
\end{center}
|
||||
\begin{enumerate}
|
||||
\item Comment doit-il placer son bâton pour pouvoir appliquer le théorème de Thalès? Dessiner le baton sur le dessin.
|
||||
|
||||
Une fois le bâton installé, il mesure les distances suivantes:
|
||||
\begin{itemize}
|
||||
\item Diamètre de la tour: 15.5m.
|
||||
\item Taille du baton 1,5m.
|
||||
\item Taille de l'ombre du baton: 2m
|
||||
\item Taille de l'ombre de la tour: 66,95m
|
||||
\end{itemize}
|
||||
\item Reporter les mesures sur le dessin.
|
||||
\item Calculer la hauteur de la tour de Pise.
|
||||
\end{enumerate}
|
||||
|
||||
\end{Exo}
|
||||
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/Geometrie/Thales/exo/exo3_b.pdf
Normal file
72
4e/Geometrie/Thales/exo/exo3_b.tex
Normal file
@@ -0,0 +1,72 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{calc}
|
||||
|
||||
% Title Page
|
||||
\title{Thalès- Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{fancy}
|
||||
\begin{Exo}
|
||||
Inspiré par l'expérience de Thalès, Tom en voyage à Pise veut mesurer la tour penchée grâce à son ombre. Il se renseigne et apprend qu'elle est penchée de $4,19^o$ comme sur le dessin suivant:
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.4]{./fig/ombre_pise}
|
||||
\end{center}
|
||||
\begin{enumerate}
|
||||
\item Comment doit-il placer son bâton pour pouvoir appliquer le théorème de Thalès? Dessiner le baton sur le dessin.
|
||||
|
||||
Une fois le bâton installé, il mesure les distances suivantes:
|
||||
\begin{itemize}
|
||||
\item Diamètre de la tour: 15.5m.
|
||||
\item Taille du baton 1,5m.
|
||||
\item Taille de l'ombre du baton: 2m
|
||||
\item Taille de l'ombre de la tour: 66,95m
|
||||
\end{itemize}
|
||||
\item Reporter les mesures sur le dessin.
|
||||
\item Calculer la hauteur de la tour de Pise.
|
||||
\end{enumerate}
|
||||
|
||||
\end{Exo}
|
||||
|
||||
\setcounter{exo}{0}
|
||||
|
||||
\eject
|
||||
|
||||
\begin{Exo}
|
||||
Inspiré par l'expérience de Thalès, Tom en voyage à Pise veut mesurer la tour penchée grâce à son ombre. Il se renseigne et apprend qu'elle est penchée de $4,19^o$ comme sur le dessin suivant:
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.4]{./fig/ombre_pise}
|
||||
\end{center}
|
||||
\begin{enumerate}
|
||||
\item Comment doit-il placer son bâton pour pouvoir appliquer le théorème de Thalès? Dessiner le baton sur le dessin.
|
||||
|
||||
Une fois le bâton installé, il mesure les distances suivantes:
|
||||
\begin{itemize}
|
||||
\item Diamètre de la tour: 15.5m.
|
||||
\item Taille du baton 1,5m.
|
||||
\item Taille de l'ombre du baton: 2m
|
||||
\item Taille de l'ombre de la tour: 66,95m
|
||||
\end{itemize}
|
||||
\item Reporter les mesures sur le dessin.
|
||||
\item Calculer la hauteur de la tour de Pise.
|
||||
\end{enumerate}
|
||||
|
||||
\end{Exo}
|
||||
|
||||
\eject
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/Geometrie/Thales/exo/fig/ABCMN.pdf
Normal file
BIN
4e/Geometrie/Thales/exo/fig/IJKLM.pdf
Normal file
BIN
4e/Geometrie/Thales/exo/fig/Telepherique.pdf
Normal file
105
4e/Geometrie/Thales/exo/fig/Telepherique.svg
Normal file
@@ -0,0 +1,105 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
version="1.1"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2">
|
||||
<defs
|
||||
id="defs4">
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3763" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3759" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3755" />
|
||||
</defs>
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
transform="translate(0,-308.2677)"
|
||||
id="layer1">
|
||||
<g
|
||||
transform="matrix(1.3435879,0,0,1.506971,-183.15753,-495.44693)"
|
||||
id="g3819">
|
||||
<path
|
||||
d="m 148.07231,569.89176 762.75906,0"
|
||||
transform="translate(0,308.2677)"
|
||||
id="path3753"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 552.30972,875.511 c 0,0 34.35104,-168.43223 116.14107,-219.96415"
|
||||
id="path3765"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 783.2484,875.25329 c 0,0 -71.68019,-214.47152 -116.14107,-219.96415"
|
||||
id="path3765-2"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<text
|
||||
x="585.9845"
|
||||
y="617.39514"
|
||||
transform="translate(0,308.2677)"
|
||||
id="text3785"
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="585.9845"
|
||||
y="617.39514"
|
||||
id="tspan3787">Mont Blanc</tspan></text>
|
||||
<text
|
||||
x="169.81233"
|
||||
y="614.75555"
|
||||
transform="translate(0,308.2677)"
|
||||
id="text3789"
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="169.81233"
|
||||
y="614.75555"
|
||||
id="tspan3791">Chamonix</tspan></text>
|
||||
<path
|
||||
d="M 194.44831,566.36345 668.69103,346.39929"
|
||||
transform="translate(0,308.2677)"
|
||||
id="path3793"
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||
<path
|
||||
d="m 668.69103,348.15901 0,218.20444"
|
||||
transform="translate(0,308.2677)"
|
||||
id="path3795"
|
||||
style="fill:none;stroke:#000000;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:3, 6;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 549.03053,709.74595 0,166.99693"
|
||||
id="path3795-0"
|
||||
style="fill:none;stroke:#000000;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:3, 6;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 391.84727,782.39716 0,14.07771"
|
||||
id="path3815"
|
||||
style="fill:none;stroke:#000000;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
width="37.640232"
|
||||
height="20.842112"
|
||||
x="372.35831"
|
||||
y="797.2796"
|
||||
id="rect3817"
|
||||
style="fill:none;stroke:#000000;stroke-width:3;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 4.4 KiB |
BIN
4e/Geometrie/Thales/exo/fig/USTXY.pdf
Normal file
158
4e/Geometrie/Thales/exo/fig/USTXY.svg
Normal file
@@ -0,0 +1,158 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg4488"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="USTXY.pdf">
|
||||
<defs
|
||||
id="defs4490">
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect5010"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect5006"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect5010-6"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect5010-3"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect5010-4"
|
||||
is_visible="true" />
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.80366138"
|
||||
inkscape:cx="526.18109"
|
||||
inkscape:cy="421.81945"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata4493">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(0,-308.2677)">
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
d="M 941.772,440.14676 25.939118,531.57353 804.2913,879.58512"
|
||||
id="path5004"
|
||||
inkscape:path-effect="#path-effect5006"
|
||||
inkscape:original-d="M 941.772,440.14676 25.939118,531.57353 804.2913,879.58512"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
d="M 705.71155,988.52621 927.67183,322.76232"
|
||||
id="path5008"
|
||||
inkscape:path-effect="#path-effect5010"
|
||||
inkscape:original-d="M 705.71155,988.52621 927.67183,322.76232"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
d="M 566.76024,906.59258 753.44755,346.62902"
|
||||
id="path5008-6"
|
||||
inkscape:path-effect="#path-effect5010-4"
|
||||
inkscape:original-d="M 566.76024,906.59258 753.44755,346.62902"
|
||||
inkscape:connector-curvature="0" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="33.596237"
|
||||
y="185.40147"
|
||||
id="text5209"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5211"
|
||||
x="33.596237"
|
||||
y="185.40147">U</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="862.30347"
|
||||
y="115.72038"
|
||||
id="text5213"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5215"
|
||||
x="862.30347"
|
||||
y="115.72038">S</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="771.46918"
|
||||
y="614.68677"
|
||||
id="text5217"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5219"
|
||||
x="771.46918"
|
||||
y="614.68677">T</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="542.51703"
|
||||
y="512.65375"
|
||||
id="text5221"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5223"
|
||||
x="542.51703"
|
||||
y="512.65375">X</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="681.87921"
|
||||
y="138.11787"
|
||||
id="text5225"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5227"
|
||||
x="681.87921"
|
||||
y="138.11787">Y</tspan></text>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 6.1 KiB |
BIN
4e/Geometrie/Thales/exo/fig/ombre_pise.pdf
Normal file
2406
4e/Geometrie/Thales/exo/fig/ombre_pise.svg
Normal file
|
After Width: | Height: | Size: 185 KiB |
BIN
4e/Geometrie/Thales/exo/fig/pyramide.pdf
Normal file
292
4e/Geometrie/Thales/exo/fig/pyramide.svg
Normal file
@@ -0,0 +1,292 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="pyramide.pdf">
|
||||
<defs
|
||||
id="defs4">
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Mend"
|
||||
style="overflow:visible;">
|
||||
<path
|
||||
id="path3960"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1.0pt;"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" />
|
||||
</marker>
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3864"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3860"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3769"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3763"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3759"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3755"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3769-1"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3769-3"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3769-6"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3769-66"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3769-1-5"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3769-3-1"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3769-6-1"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3864-8"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3864-6"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3864-6-7"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3864-6-4"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3864-6-78"
|
||||
is_visible="true" />
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.80366138"
|
||||
inkscape:cx="526.18109"
|
||||
inkscape:cy="372.04724"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(0,-308.2677)">
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5.78706932;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
d="m 16.569499,974.59546 964.917971,0"
|
||||
id="path3753"
|
||||
inkscape:path-effect="#path-effect3755"
|
||||
inkscape:original-d="m 16.569499,974.59546 964.917971,0"
|
||||
inkscape:connector-curvature="0" />
|
||||
<g
|
||||
id="g4399"
|
||||
transform="matrix(1.1574139,0,0,1.1574139,-124.56776,-93.93253)">
|
||||
<g
|
||||
id="g4391">
|
||||
<path
|
||||
sodipodi:type="arc"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path3765"
|
||||
sodipodi:cx="933.85101"
|
||||
sodipodi:cy="111.36531"
|
||||
sodipodi:rx="16.79812"
|
||||
sodipodi:ry="16.79812"
|
||||
d="m 950.64913,111.36531 c 0,9.27735 -7.52077,16.79812 -16.79812,16.79812 -9.27734,0 -16.79812,-7.52077 -16.79812,-16.79812 0,-9.27735 7.52078,-16.79812 16.79812,-16.79812 9.27735,0 16.79812,7.52077 16.79812,16.79812 z"
|
||||
transform="translate(0.93323182,303.60156)" />
|
||||
<g
|
||||
id="g3810"
|
||||
transform="translate(0,1.6689451e-6)">
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
inkscape:original-d="M 914.56429,83.368445 898.38832,67.192478"
|
||||
inkscape:path-effect="#path-effect3769"
|
||||
id="path3767"
|
||||
d="M 914.56429,83.368445 898.38832,67.192478"
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
inkscape:original-d="m 955.0042,391.63615 16.17597,-16.17597"
|
||||
inkscape:path-effect="#path-effect3769-1"
|
||||
id="path3767-8"
|
||||
d="m 955.0042,391.63615 16.17597,-16.17597"
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
inkscape:original-d="m 898.38832,454.47356 16.17597,-16.17597"
|
||||
inkscape:path-effect="#path-effect3769-3"
|
||||
id="path3767-6"
|
||||
d="m 898.38832,454.47356 16.17597,-16.17597"
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
inkscape:original-d="m 955.0042,438.29759 16.17597,16.17597"
|
||||
inkscape:path-effect="#path-effect3769-6"
|
||||
id="path3767-7"
|
||||
d="m 955.0042,438.29759 16.17597,16.17597"
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
id="g3810-8"
|
||||
transform="matrix(-0.70710678,0.70710678,-0.70710678,-0.70710678,1889.2024,47.40048)">
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="M 914.56429,83.368445 898.38832,67.192478"
|
||||
id="path3767-63"
|
||||
inkscape:path-effect="#path-effect3769-66"
|
||||
inkscape:original-d="M 914.56429,83.368445 898.38832,67.192478"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="translate(0,308.2677)" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="m 955.0042,391.63615 16.17597,-16.17597"
|
||||
id="path3767-8-5"
|
||||
inkscape:path-effect="#path-effect3769-1-5"
|
||||
inkscape:original-d="m 955.0042,391.63615 16.17597,-16.17597"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="m 898.38832,454.47356 16.17597,-16.17597"
|
||||
id="path3767-6-1"
|
||||
inkscape:path-effect="#path-effect3769-3-1"
|
||||
inkscape:original-d="m 898.38832,454.47356 16.17597,-16.17597"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="m 955.0042,438.29759 16.17597,16.17597"
|
||||
id="path3767-7-2"
|
||||
inkscape:path-effect="#path-effect3769-6-1"
|
||||
inkscape:original-d="m 955.0042,438.29759 16.17597,16.17597"
|
||||
inkscape:connector-curvature="0" />
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
id="g3235"
|
||||
transform="translate(-98.300107,0)">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
inkscape:original-d="M 578.23817,973.15529 753.84267,668.99935 930.47934,974.94301"
|
||||
inkscape:path-effect="#path-effect3759"
|
||||
id="path3757"
|
||||
d="M 578.23817,973.15529 753.84267,668.99935 930.47934,974.94301"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.62965584;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
inkscape:original-d="m 752.49947,667.83796 0,306.7575"
|
||||
inkscape:path-effect="#path-effect3763"
|
||||
id="path3761"
|
||||
d="m 752.49947,667.83796 0,306.7575"
|
||||
style="fill:none;stroke:#000000;stroke-width:1.15741396px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
inkscape:original-d="m 378.20235,971.71511 c 0,-67.68827 0,-67.68827 0,-67.68827"
|
||||
inkscape:path-effect="#path-effect3860"
|
||||
id="path3858"
|
||||
d="m 378.20235,971.71511 0,-67.68827"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.62965584;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
inkscape:original-d="M 773.19381,654.96697 274.49786,972.52809"
|
||||
inkscape:path-effect="#path-effect3864"
|
||||
id="path3862"
|
||||
d="M 773.19381,654.96697 274.49786,972.52809"
|
||||
style="fill:none;stroke:#000000;stroke-width:4.62965584;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4.62965559, 9.25931117;stroke-dashoffset:0" />
|
||||
</g>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4.62965584;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4.62965559, 9.25931117;stroke-dashoffset:0;marker-end:url(#Arrow1Mend)"
|
||||
d="M 828.96432,381.72926 648.3891,496.71648"
|
||||
id="path3862-8"
|
||||
inkscape:path-effect="#path-effect3864-6"
|
||||
inkscape:original-d="M 828.96432,381.72926 648.3891,496.71648"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4.62965584;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4.62965559, 9.25931117;stroke-dashoffset:0;marker-end:url(#Arrow1Mend)"
|
||||
d="M 879.67227,442.40133 699.09704,557.38856"
|
||||
id="path3862-8-9"
|
||||
inkscape:path-effect="#path-effect3864-6-7"
|
||||
inkscape:original-d="M 879.67227,442.40133 699.09704,557.38856"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4.62965584;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4.62965559, 9.25931117;stroke-dashoffset:0;marker-end:url(#Arrow1Mend)"
|
||||
d="M 953.42675,522.20213 772.85153,637.18936"
|
||||
id="path3862-8-1"
|
||||
inkscape:path-effect="#path-effect3864-6-4"
|
||||
inkscape:original-d="M 953.42675,522.20213 772.85153,637.18936"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4.62965584;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4.62965559, 9.25931117;stroke-dashoffset:0;marker-end:url(#Arrow1Mend)"
|
||||
d="M 983.90407,577.64723 803.32885,692.63446"
|
||||
id="path3862-8-5"
|
||||
inkscape:path-effect="#path-effect3864-6-78"
|
||||
inkscape:original-d="M 983.90407,577.64723 803.32885,692.63446"
|
||||
inkscape:connector-curvature="0" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 12 KiB |
429
4e/Geometrie/Thales/exo/fig/tour_pise.svg
Normal file
|
After Width: | Height: | Size: 117 KiB |
39
4e/Geometrie/Thales/exo/index.rst
Normal file
@@ -0,0 +1,39 @@
|
||||
Notes sur divers exercices autour du théorème de Thales
|
||||
#######################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Geometrie,Exo
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers exo3_b.pdf <exo3_b.pdf>`_
|
||||
|
||||
`Lien vers exo2.pdf <exo2.pdf>`_
|
||||
|
||||
`Lien vers exo1.pdf <exo1.pdf>`_
|
||||
|
||||
`Lien vers exo2.tex <exo2.tex>`_
|
||||
|
||||
`Lien vers exo3_b.tex <exo3_b.tex>`_
|
||||
|
||||
`Lien vers exo1.tex <exo1.tex>`_
|
||||
|
||||
`Lien vers exo3.tex <exo3.tex>`_
|
||||
|
||||
`Lien vers exo3.pdf <exo3.pdf>`_
|
||||
|
||||
`Lien vers fig/ombre_pise.pdf <fig/ombre_pise.pdf>`_
|
||||
|
||||
`Lien vers fig/pyramide.pdf <fig/pyramide.pdf>`_
|
||||
|
||||
`Lien vers fig/USTXY.pdf <fig/USTXY.pdf>`_
|
||||
|
||||
`Lien vers fig/ABCMN.pdf <fig/ABCMN.pdf>`_
|
||||
|
||||
`Lien vers fig/IJKLM.pdf <fig/IJKLM.pdf>`_
|
||||
|
||||
`Lien vers fig/Telepherique.pdf <fig/Telepherique.pdf>`_
|
||||
BIN
4e/Geometrie/Thales/geogebra/fig/2014-05-22_08-58-1400741902.jpg
Normal file
|
After Width: | Height: | Size: 10 KiB |
BIN
4e/Geometrie/Thales/geogebra/fig/2014-05-22_08-58-1400741912.jpg
Normal file
|
After Width: | Height: | Size: 9.9 KiB |
BIN
4e/Geometrie/Thales/geogebra/fig/2014-05-22_08-58-1400741930.jpg
Normal file
|
After Width: | Height: | Size: 11 KiB |
BIN
4e/Geometrie/Thales/geogebra/fig/2014-05-22_09-04-1400742280.jpg
Normal file
|
After Width: | Height: | Size: 1.1 KiB |
BIN
4e/Geometrie/Thales/geogebra/fig/curseur.png
Normal file
|
After Width: | Height: | Size: 3.4 KiB |
BIN
4e/Geometrie/Thales/geogebra/fig/figure.jpg
Normal file
|
After Width: | Height: | Size: 17 KiB |
BIN
4e/Geometrie/Thales/geogebra/fig/figure.png
Normal file
|
After Width: | Height: | Size: 85 KiB |
BIN
4e/Geometrie/Thales/geogebra/fig/intersection.png
Normal file
|
After Width: | Height: | Size: 3.4 KiB |
BIN
4e/Geometrie/Thales/geogebra/fig/parallele.png
Normal file
|
After Width: | Height: | Size: 4.2 KiB |
BIN
4e/Geometrie/Thales/geogebra/fig/point.png
Normal file
|
After Width: | Height: | Size: 4.0 KiB |
BIN
4e/Geometrie/Thales/geogebra/fig/polygon.png
Normal file
|
After Width: | Height: | Size: 4.5 KiB |
BIN
4e/Geometrie/Thales/geogebra/fig/tableau.png
Normal file
|
After Width: | Height: | Size: 36 KiB |
BIN
4e/Geometrie/Thales/geogebra/geogebra.pdf
Normal file
66
4e/Geometrie/Thales/geogebra/geogebra.tex
Normal file
@@ -0,0 +1,66 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{calc}
|
||||
|
||||
% Title Page
|
||||
\title{Thalès - Géogebra }
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{fancy}
|
||||
|
||||
\section{Construction de la figure}
|
||||
|
||||
\begin{enumerate}
|
||||
\item \includegraphics[scale=0.008]{fig/curseur} Placer 3 points $A$, $B$, $C$ (les renommer si necessaire avec clic droit).
|
||||
\item \includegraphics[scale=0.008]{fig/polygon} En utilisant l'outil "polygone", tracer le triangle $ABC$.
|
||||
\item \includegraphics[scale=0.008]{fig/point} Placer le point $M$ sur le segment $[AB]$.
|
||||
\item \includegraphics[scale=0.008]{fig/parallele} Tracer la parallèleà $(BC)$ passant par $M$.
|
||||
\item \includegraphics[scale=0.008]{fig/intersection} Placer le point $N$ point d'intersection de cette droite et de $[AC]$.
|
||||
\item Effacer la droite (clic droit puis décocher "Afficher l'objet").
|
||||
\item \includegraphics[scale=0.008]{fig/polygon} Tracer le triangle $AMN$ (toujours avec l'outil polygone).
|
||||
\item \includegraphics[scale=0.008]{fig/curseur} Déplacer les points pour vérifier que la figure est bien faite.
|
||||
\end{enumerate}
|
||||
|
||||
\section{Mesure et distance}
|
||||
Maintenant que la figure est faite nous allons utiliser les outils de Géogebra pour mesurer notre figure et faire les calculs à notre place.
|
||||
|
||||
\subsection{Un tableur}
|
||||
\begin{enumerate}
|
||||
\item Ouvrir le tableur de Géogebra (\textit{affichage > Tableur}).
|
||||
\item Completer le tableau pour qu'il soit le même que dans le figure ci dessous.
|
||||
|
||||
\includegraphics[scale=0.008]{./fig/tableau}
|
||||
|
||||
\end{enumerate}
|
||||
|
||||
\subsection{Mesure et calculs}
|
||||
\begin{enumerate}
|
||||
\item Nous allons commencer par mesurer la distance $AM$ pour cela taper dans la case \texttt{C3}: \textbf{=Distance[A,M]}.
|
||||
\item Puis dans la case \texttt{C4}, nous allons y mettre la distance $AB$ en tapant: \textbf{=Distance[A,B]}.
|
||||
\item Finir de completer les cases \texttt{E3}, \texttt{E4}, \texttt{G3} et \texttt{G4}.
|
||||
\item Le tableau ainsi créé est-il un tableau de proportionnalité? Proposer un calcul à faire faire par Géogebra pour vérifier que le tableau est un tableau de proportionnalité.
|
||||
|
||||
\end{enumerate}
|
||||
|
||||
\subsection{Vérfications}
|
||||
Déplacer les points pour vérifier que les distances sont bien proportionnelles quelque soit la forme du triangle et la position de $M$ sur le segment $[AB]$.
|
||||
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.3]{./fig/figure}
|
||||
\end{center}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
39
4e/Geometrie/Thales/geogebra/index.rst
Normal file
@@ -0,0 +1,39 @@
|
||||
Notes sur une activité autour du théorème de Thales et de Geogébra
|
||||
##################################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Geometrie, TICE, Géogébra
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers geogebra.tex <geogebra.tex>`_
|
||||
|
||||
`Lien vers geogebra.pdf <geogebra.pdf>`_
|
||||
|
||||
`Lien vers fig/point.png <fig/point.png>`_
|
||||
|
||||
`Lien vers fig/2014-05-22_09-04-1400742280.jpg <fig/2014-05-22_09-04-1400742280.jpg>`_
|
||||
|
||||
`Lien vers fig/tableau.png <fig/tableau.png>`_
|
||||
|
||||
`Lien vers fig/figure.png <fig/figure.png>`_
|
||||
|
||||
`Lien vers fig/figure.jpg <fig/figure.jpg>`_
|
||||
|
||||
`Lien vers fig/parallele.png <fig/parallele.png>`_
|
||||
|
||||
`Lien vers fig/2014-05-22_08-58-1400741912.jpg <fig/2014-05-22_08-58-1400741912.jpg>`_
|
||||
|
||||
`Lien vers fig/curseur.png <fig/curseur.png>`_
|
||||
|
||||
`Lien vers fig/2014-05-22_08-58-1400741930.jpg <fig/2014-05-22_08-58-1400741930.jpg>`_
|
||||
|
||||
`Lien vers fig/polygon.png <fig/polygon.png>`_
|
||||
|
||||
`Lien vers fig/2014-05-22_08-58-1400741902.jpg <fig/2014-05-22_08-58-1400741902.jpg>`_
|
||||
|
||||
`Lien vers fig/intersection.png <fig/intersection.png>`_
|
||||