Import work from year 2013-2014
BIN
4e/Nombres_Calculs/Cal_litt/Conn/Conn0324.pdf
Normal file
63
4e/Nombres_Calculs/Cal_litt/Conn/Conn0324.tex
Normal file
@@ -0,0 +1,63 @@
|
||||
\documentclass{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classConn}
|
||||
|
||||
|
||||
% Title Page
|
||||
\title{}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{multicols}{2}
|
||||
|
||||
Nom - Prénom:
|
||||
\section{Connaissance}
|
||||
|
||||
\begin{enumerate}
|
||||
\item $k$, $a$ et $b$ sont trois nombres alors \\
|
||||
\begin{eqnarray*}
|
||||
k(a + b) & = & \cdots\cdots\cdots
|
||||
\end{eqnarray*}
|
||||
|
||||
\item Quand il y a un "-" devant des parenthèses, pour les enlever, il faut \dotfill \\[0.5cm]
|
||||
. \dotfill
|
||||
|
||||
\item Évaluer les expressions suivantes avec $x = 2$
|
||||
\begin{eqnarray*}
|
||||
A = 2x - 5 = \cdots \\[2cm]
|
||||
B = 2x^2 - 1 = \cdots \\[2cm]
|
||||
C = 2(3x - 5) = \cdots
|
||||
\end{eqnarray*}
|
||||
|
||||
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\columnbreak
|
||||
Nom - Prénom
|
||||
\section{Connaissance}
|
||||
\begin{enumerate}
|
||||
\item $k$, $a$ et $b$ sont trois nombres alors
|
||||
\begin{eqnarray*}
|
||||
k(a + b) & = & \cdots\cdots\cdots
|
||||
\end{eqnarray*}
|
||||
\item Quand il y a rien entre une lettre et un chiffre, c'est comme s'il y avait \dotfill
|
||||
%. \dotfill
|
||||
|
||||
\item Évaluer les expressions suivantes avec $x = 3$
|
||||
\begin{eqnarray*}
|
||||
A = 3x - 5 = \cdots \\[2cm]
|
||||
B = x^2 - 6 = \cdots \\[2cm]
|
||||
C = 3(2x - 5) = \cdots
|
||||
\end{eqnarray*}
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\end{multicols}
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
BIN
4e/Nombres_Calculs/Cal_litt/Conn/Conn1209.pdf
Normal file
71
4e/Nombres_Calculs/Cal_litt/Conn/Conn1209.tex
Normal file
@@ -0,0 +1,71 @@
|
||||
\documentclass{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classConn}
|
||||
|
||||
|
||||
% Title Page
|
||||
\title{}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{multicols}{2}
|
||||
|
||||
Nom - Prénom:
|
||||
\section{Connaissance}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Une \textbf{expression littérale} est \dotfill \\[0.5cm]
|
||||
. \dotfill .
|
||||
\item Effectuer les calculs suivants en indiquant les étapes sur la feuille (calculatrice interdite) \\
|
||||
$7+2\times3 = $ \\[1cm]
|
||||
$2^2 +1 = $ \\[1cm]
|
||||
$2(2-5) = $ \\[1cm]
|
||||
\end{enumerate}
|
||||
|
||||
Nom - Prénom:
|
||||
\section{Connaissance}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Pour évaluer une expression littérale, il faut \dotfill \\[0.5cm]
|
||||
. \dotfill .
|
||||
\item Effectuer les calculs suivants en indiquant les étapes sur la feuille (calculatrice interdite) \\
|
||||
$9+4\times2 = $ \\[1cm]
|
||||
$2^2 - 1 = $ \\[1cm]
|
||||
$4(2-4) = $ \\
|
||||
\end{enumerate}
|
||||
|
||||
\columnbreak
|
||||
Nom - Prénom:
|
||||
\section{Connaissance}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Une \textbf{expression littérale} est \dotfill \\[0.5cm]
|
||||
. \dotfill .
|
||||
\item Effectuer les calculs suivants en indiquant les étapes sur la feuille (calculatrice interdite) \\
|
||||
$2 - 4 \times 2 = $ \\[1cm]
|
||||
$3^2 + 2 = $ \\[1cm]
|
||||
$4(2-6) = $ \\[1cm]
|
||||
\end{enumerate}
|
||||
|
||||
Nom - Prénom
|
||||
\section{Connaissance}
|
||||
|
||||
|
||||
\begin{enumerate}
|
||||
\item Pour évaluer une expression littérale, il faut \dotfill \\[0.5cm]
|
||||
. \dotfill .
|
||||
\item Effectuer les calculs suivants en indiquant les étapes sur la feuille (calculatrice interdite) \\
|
||||
$7\times 2 + 3 = $ \\[1cm]
|
||||
$3^2 - 1 = $ \\[1cm]
|
||||
$3(1-5) = $ \\
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\end{multicols}
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
BIN
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo.pdf
Normal file
76
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo.tex
Normal file
@@ -0,0 +1,76 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
|
||||
% Title Page
|
||||
\title{Develloper factoriser - Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{empty}
|
||||
|
||||
\begin{Exo}
|
||||
Compléter les pointillés pour développer les expressions.
|
||||
\begin{enumerate}
|
||||
\item$A = (2x + 3)(4 + 7x)$
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/doubleProd}
|
||||
|
||||
$A = \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots $
|
||||
\end{center}
|
||||
|
||||
\item$B = (5x + 2)(-4 + x)$
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/doubleProd}
|
||||
|
||||
$B = \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots $
|
||||
\end{center}
|
||||
|
||||
\item$C = (2x - 3)(-4 + 7x)$
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/doubleProd}
|
||||
|
||||
$C = \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots $
|
||||
\end{center}
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
|
||||
\setcounter{exo}{0}
|
||||
|
||||
\begin{Exo}
|
||||
Compléter les pointillés pour développer les expressions.
|
||||
\begin{enumerate}
|
||||
\item$A = (2x + 3)(4 + 7x)$
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/doubleProd}
|
||||
|
||||
$A = \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots $
|
||||
\end{center}
|
||||
|
||||
\item$B = (5x + 2)(-4 + x)$
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/doubleProd}
|
||||
|
||||
$B = \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots $
|
||||
\end{center}
|
||||
|
||||
\item$C = (2x - 3)(-4 + 7x)$
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/doubleProd}
|
||||
|
||||
$C = \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots $
|
||||
\end{center}
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo_2.pdf
Normal file
78
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo_2.tex
Normal file
@@ -0,0 +1,78 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
|
||||
% Title Page
|
||||
\title{Develloper factoriser - Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{fancy}
|
||||
|
||||
\begin{Exo}
|
||||
Réduire les produits suivants
|
||||
\begin{eqnarray*}
|
||||
2x \times 3 = \cdots &\hspace{2cm}& 4 \times 3b = \cdots \\[0.4cm]
|
||||
3x \times (-3) = \cdots &\hspace{2cm}& 7 \times 2b = \cdots \\[0.4cm]
|
||||
-2x \times (-5) = \cdots &\hspace{2cm}& 4x \times 3x = \cdots \\[0.4cm]
|
||||
-5x \times (-x) = \cdots &\hspace{2cm}& 4x^2 \times 3 = \cdots \\
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Réduire les sommes suivantes
|
||||
\begin{eqnarray*}
|
||||
2x + 3 + 4x & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
2 + 3x - 6 & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
-2x + 3x^2 + 6x & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
2x^2 + 3x - 4x + 4 & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
9x^2 + 4x - 4x + 4 & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
x^2 + 3 - 4x + 4 & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
3\times2^2x + 1\times 3 - 4\times2x + 4 & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
x^2 + 3 - 4x + 4 & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\vspace{3cm}
|
||||
|
||||
|
||||
\begin{Exo}
|
||||
Développer les expressions suivantes (on ne demande pas de réduire)
|
||||
|
||||
\begin{eqnarray*}
|
||||
(2x + 3)(4x + 1) &=& \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots \\[0.4cm]
|
||||
(x + 6)(2x + 3) &=& \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots \\[0.4cm]
|
||||
(3x - 3)(x + 1) &=& \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots \\[0.4cm]
|
||||
(3x - 5)(x - 5) &=& \\[0.4cm]
|
||||
(2x^2 + x)(3 - 3x) &=&
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Développer, réduire et mettre sous la forme $ax^2 + bx + c$.
|
||||
\begin{eqnarray*}
|
||||
(2x + 3)(4x + 1) &=& \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.6cm]
|
||||
(x + 4)(2x - 1) &=& \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm}
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo_3.pdf
Normal file
90
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo_3.tex
Normal file
@@ -0,0 +1,90 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
|
||||
% Title Page
|
||||
\title{Develloper factoriser - Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{empty}
|
||||
|
||||
\begin{Exo}
|
||||
Développer les expressions suivantes (on ne demande pas de réduire)
|
||||
|
||||
\begin{eqnarray*}
|
||||
A = (6x - 2)(6x + 1) \hspace{1cm}
|
||||
B = (2x + 3)^2 \hspace{1cm}
|
||||
C = (2x - 3)^2
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Développer, réduire et mettre sous la forme $ax^2 + bx + c$.
|
||||
\begin{eqnarray*}
|
||||
A = (2 + 7x)(2x - 7x) &=& \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots \\[0.4cm]
|
||||
\mbox{Simplification des } "\times" &=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
\mbox{On range }&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
\mbox{Simplification des } "+"&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
\mbox{Ordre demandé}&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.6cm]
|
||||
\end{eqnarray*}
|
||||
Ici on a alors
|
||||
\begin{eqnarray*}
|
||||
a = \parbox{1cm}{\dotfill} \qquad b = \parbox{1cm}{\dotfill}\qquad c = \parbox{1cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
|
||||
En reprennant les mêmes étapes qu'au dessus, développer, réduire et mettre sous la forme $ax^2 + bx + c$ les expressions suivantes
|
||||
\begin{eqnarray*}
|
||||
B & = & (2x + 5)(4 + 4x) \\
|
||||
C & = & (4x - 1)^2 \\
|
||||
C & = & (-2x - 3)^2 \\
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\vfill\eject
|
||||
\setcounter{exo}{0}
|
||||
|
||||
\begin{Exo}
|
||||
Développer les expressions suivantes (on ne demande pas de réduire)
|
||||
|
||||
\begin{eqnarray*}
|
||||
A = (6x - 2)(6x + 1) \hspace{1cm}
|
||||
B = (2x + 3)^2 \hspace{1cm}
|
||||
C = (2x - 3)^2
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Développer, réduire et mettre sous la forme $ax^2 + bx + c$.
|
||||
\begin{eqnarray*}
|
||||
A = (2 + 7x)(2x - 7x) &=& \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots \\[0.4cm]
|
||||
\mbox{Simplification des } "\times" &=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
\mbox{On range }&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
\mbox{Simplification des } "+"&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
\mbox{Ordre demandé}&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.6cm]
|
||||
\end{eqnarray*}
|
||||
Ici on a alors
|
||||
\begin{eqnarray*}
|
||||
a = \parbox{1cm}{\dotfill} \qquad b = \parbox{1cm}{\dotfill}\qquad c = \parbox{1cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
|
||||
En reprennant les mêmes étapes qu'au dessus, développer, réduire et mettre sous la forme $ax^2 + bx + c$ les expressions suivantes
|
||||
\begin{eqnarray*}
|
||||
B & = & (2x + 5)(4 + 4x) \\
|
||||
C & = & (4x - 1)^2 \\
|
||||
C & = & (-2x - 3)^2 \\
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
68
4e/Nombres_Calculs/Cal_litt/Exo/fig/doubleProd.pdf
Normal file
@@ -0,0 +1,68 @@
|
||||
%PDF-1.5
|
||||
%<25><><EFBFBD><EFBFBD>
|
||||
3 0 obj
|
||||
<< /Length 4 0 R
|
||||
/Filter /FlateDecode
|
||||
>>
|
||||
stream
|
||||
x<EFBFBD><EFBFBD><EFBFBD><EFBFBD>JD1F<>}<7D><><EFBFBD><EFBFBD><EFBFBD>k<EFBFBD>'\<5C>.<17>"<22>w1<77><31><EFBFBD>7<EFBFBD><37><EFBFBD><EFBFBD><EFBFBD>RJ<52>G{8iΥ<69>Xwp<77>\<5C><><EFBFBD>(|<17>C<EFBFBD><1F><>+<2B>fxg<><67><EFBFBD><EFBFBD>(<16><>f<EFBFBD><66><EFBFBD>GqREQh<51>H<EFBFBD>@<40><>d<EFBFBD><64><EFBFBD>#<1C>x(;<0E>f<EFBFBD>C<>\#<23><>>W<> <20><> F͝<46>)<29><>M<EFBFBD><4D>=e<14>[b<><14>}&<1B><>@rF<72><46><EFBFBD><02>d<EFBFBD>j<EFBFBD>X<EFBFBD><58><EFBFBD>D<EFBFBD><44><EFBFBD>z<EFBFBD>o<EFBFBD>-<2D>h<EFBFBD><68>zp<>f<EFBFBD>dw<1C><><1E>հ<EFBFBD>X<16>k<><6B><EFBFBD><EFBFBD>?<3F><>%<03>m<EFBFBD><6D>7<37>
|
||||
y,?2v<32>
|
||||
endstream
|
||||
endobj
|
||||
4 0 obj
|
||||
237
|
||||
endobj
|
||||
2 0 obj
|
||||
<<
|
||||
/ExtGState <<
|
||||
/a0 << /CA 1 /ca 1 >>
|
||||
>>
|
||||
>>
|
||||
endobj
|
||||
5 0 obj
|
||||
<< /Type /Page
|
||||
/Parent 1 0 R
|
||||
/MediaBox [ 0 0 841.889771 595.275574 ]
|
||||
/Contents 3 0 R
|
||||
/Group <<
|
||||
/Type /Group
|
||||
/S /Transparency
|
||||
/I true
|
||||
/CS /DeviceRGB
|
||||
>>
|
||||
/Resources 2 0 R
|
||||
>>
|
||||
endobj
|
||||
1 0 obj
|
||||
<< /Type /Pages
|
||||
/Kids [ 5 0 R ]
|
||||
/Count 1
|
||||
>>
|
||||
endobj
|
||||
6 0 obj
|
||||
<< /Creator (cairo 1.12.16 (http://cairographics.org))
|
||||
/Producer (cairo 1.12.16 (http://cairographics.org))
|
||||
>>
|
||||
endobj
|
||||
7 0 obj
|
||||
<< /Type /Catalog
|
||||
/Pages 1 0 R
|
||||
>>
|
||||
endobj
|
||||
xref
|
||||
0 8
|
||||
0000000000 65535 f
|
||||
0000000651 00000 n
|
||||
0000000351 00000 n
|
||||
0000000015 00000 n
|
||||
0000000329 00000 n
|
||||
0000000423 00000 n
|
||||
0000000716 00000 n
|
||||
0000000845 00000 n
|
||||
trailer
|
||||
<< /Size 8
|
||||
/Root 7 0 R
|
||||
/Info 6 0 R
|
||||
>>
|
||||
startxref
|
||||
897
|
||||
145
4e/Nombres_Calculs/Cal_litt/Exo/fig/doubleProd.svg
Normal file
@@ -0,0 +1,145 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="simpleProd.pdf">
|
||||
<defs
|
||||
id="defs4">
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3837"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3757"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-6"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-0"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-9"
|
||||
is_visible="true" />
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.80366138"
|
||||
inkscape:cx="526.18109"
|
||||
inkscape:cy="372.04724"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(0,-308.2677)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="rect3753"
|
||||
width="790.13379"
|
||||
height="462.88153"
|
||||
x="171.71411"
|
||||
y="180.42424"
|
||||
transform="translate(0,308.2677)" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
d="m 368.31433,181.66855 0,460.39291"
|
||||
id="path3755"
|
||||
inkscape:path-effect="#path-effect3757"
|
||||
inkscape:original-d="m 368.31433,181.66855 0,460.39291"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="translate(0,308.2677)" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="53.505123"
|
||||
y="428.04099"
|
||||
id="text3759"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3761"
|
||||
x="53.505123"
|
||||
y="428.04099" /></text>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0"
|
||||
d="m 47.283596,776.12643 95.811494,0"
|
||||
id="path3763"
|
||||
inkscape:path-effect="#path-effect3765"
|
||||
inkscape:original-d="m 47.283596,776.12643 95.811494,0"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0"
|
||||
d="m 215.88694,457.58431 95.8115,0"
|
||||
id="path3763-1"
|
||||
inkscape:path-effect="#path-effect3765-6"
|
||||
inkscape:original-d="m 215.88694,457.58431 95.8115,0"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0"
|
||||
d="m 636.46208,453.85141 95.8115,0"
|
||||
id="path3763-5"
|
||||
inkscape:path-effect="#path-effect3765-0"
|
||||
inkscape:original-d="m 636.46208,453.85141 95.8115,0"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
d="m 169.2255,308.58768 792.62238,0"
|
||||
id="path3835"
|
||||
inkscape:path-effect="#path-effect3837"
|
||||
inkscape:original-d="m 169.2255,308.58768 792.62238,0"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="translate(0,308.2677)" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0"
|
||||
d="m 40.439919,569.57178 95.811491,0"
|
||||
id="path3763-2"
|
||||
inkscape:path-effect="#path-effect3765-9"
|
||||
inkscape:original-d="m 40.439919,569.57178 95.811491,0"
|
||||
inkscape:connector-curvature="0" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 5.5 KiB |
BIN
4e/Nombres_Calculs/Cal_litt/Exo/fig/doubleProd_num.pdf
Normal file
153
4e/Nombres_Calculs/Cal_litt/Exo/fig/doubleProd_num.svg
Normal file
@@ -0,0 +1,153 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
version="1.1"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2">
|
||||
<defs
|
||||
id="defs4">
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3837" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3757" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-6" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-0" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-9" />
|
||||
</defs>
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
transform="translate(0,-308.2677)"
|
||||
id="layer1">
|
||||
<rect
|
||||
width="790.13379"
|
||||
height="462.88153"
|
||||
x="171.71411"
|
||||
y="180.42424"
|
||||
transform="translate(0,308.2677)"
|
||||
id="rect3753"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 368.31433,181.66855 0,460.39291"
|
||||
transform="translate(0,308.2677)"
|
||||
id="path3755"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<text
|
||||
x="53.505123"
|
||||
y="428.04099"
|
||||
transform="translate(0,308.2677)"
|
||||
id="text3759"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="53.505123"
|
||||
y="428.04099"
|
||||
id="tspan3761" /></text>
|
||||
<path
|
||||
d="m 47.283596,776.12643 95.811494,0"
|
||||
id="path3763"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 215.88694,457.58431 95.8115,0"
|
||||
id="path3763-1"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 636.46208,453.85141 95.8115,0"
|
||||
id="path3763-5"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 169.2255,308.58768 792.62238,0"
|
||||
transform="translate(0,308.2677)"
|
||||
id="path3835"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 40.439919,569.57178 95.811491,0"
|
||||
id="path3763-2"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0" />
|
||||
<text
|
||||
x="252.59395"
|
||||
y="261.30408"
|
||||
transform="translate(0,308.2677)"
|
||||
id="text3898"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="252.59395"
|
||||
y="261.30408"
|
||||
id="tspan3900">1</tspan></text>
|
||||
<text
|
||||
x="634.59564"
|
||||
y="569.75635"
|
||||
id="text3902"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="634.59564"
|
||||
y="569.75635"
|
||||
id="tspan3904">2</tspan></text>
|
||||
<text
|
||||
x="250.84492"
|
||||
y="823.41003"
|
||||
id="text3906"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="250.84492"
|
||||
y="823.41003"
|
||||
id="tspan3908">3</tspan></text>
|
||||
<text
|
||||
x="634.54291"
|
||||
y="823.47156"
|
||||
id="text3910"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="634.54291"
|
||||
y="823.47156"
|
||||
id="tspan3912">4</tspan></text>
|
||||
<path
|
||||
d="m 563.67026,441.72833 a 34.840546,32.351933 0 1 1 1.9e-4,0.10691"
|
||||
transform="translate(45.787964,368.8233)"
|
||||
id="path3914"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 563.67026,441.72833 a 34.840546,32.351933 0 1 1 1.9e-4,0.10691"
|
||||
transform="translate(45.787964,114.99384)"
|
||||
id="path3914-2"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 563.67026,441.72833 a 34.840546,32.351933 0 1 1 1.9e-4,0.10691"
|
||||
transform="translate(-338.10338,114.99384)"
|
||||
id="path3914-22"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 563.67026,441.72833 a 34.840546,32.351933 0 1 1 1.9e-4,0.10691"
|
||||
transform="translate(-338.10338,368.8233)"
|
||||
id="path3914-3"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 6.7 KiB |
BIN
4e/Nombres_Calculs/Cal_litt/Exo/fig/simpleProd.pdf
Normal file
123
4e/Nombres_Calculs/Cal_litt/Exo/fig/simpleProd.svg
Normal file
@@ -0,0 +1,123 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="Nouveau document 1">
|
||||
<defs
|
||||
id="defs4">
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3757"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-6"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-0"
|
||||
is_visible="true" />
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.80366138"
|
||||
inkscape:cx="526.18109"
|
||||
inkscape:cy="372.04724"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(0,-308.2677)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="rect3753"
|
||||
width="790.13379"
|
||||
height="462.88153"
|
||||
x="171.71411"
|
||||
y="180.42424"
|
||||
transform="translate(0,308.2677)" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
d="m 368.31433,181.66855 0,460.39291"
|
||||
id="path3755"
|
||||
inkscape:path-effect="#path-effect3757"
|
||||
inkscape:original-d="m 368.31433,181.66855 0,460.39291"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="translate(0,308.2677)" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="53.505123"
|
||||
y="428.04099"
|
||||
id="text3759"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3761"
|
||||
x="53.505123"
|
||||
y="428.04099" /></text>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:4,4;stroke-dashoffset:0"
|
||||
d="m 51.016511,430.52958 95.811499,0"
|
||||
id="path3763"
|
||||
inkscape:path-effect="#path-effect3765"
|
||||
inkscape:original-d="m 51.016511,430.52958 95.811499,0"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="translate(0,308.2677)" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0"
|
||||
d="m 215.88694,457.58431 95.8115,0"
|
||||
id="path3763-1"
|
||||
inkscape:path-effect="#path-effect3765-6"
|
||||
inkscape:original-d="m 215.88694,457.58431 95.8115,0"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0"
|
||||
d="m 636.46208,453.85141 95.8115,0"
|
||||
id="path3763-5"
|
||||
inkscape:path-effect="#path-effect3765-0"
|
||||
inkscape:original-d="m 636.46208,453.85141 95.8115,0"
|
||||
inkscape:connector-curvature="0" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 4.5 KiB |
29
4e/Nombres_Calculs/Cal_litt/Exo/index.rst
Normal file
@@ -0,0 +1,29 @@
|
||||
Notes sur des exercices autour de la double distributivité
|
||||
##########################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Nombres Calculs,Exo
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers double_prod_exo_2.tex <double_prod_exo_2.tex>`_
|
||||
|
||||
`Lien vers double_prod_exo_2.pdf <double_prod_exo_2.pdf>`_
|
||||
|
||||
`Lien vers double_prod_exo.tex <double_prod_exo.tex>`_
|
||||
|
||||
`Lien vers double_prod_exo_3.tex <double_prod_exo_3.tex>`_
|
||||
|
||||
`Lien vers double_prod_exo_3.pdf <double_prod_exo_3.pdf>`_
|
||||
|
||||
`Lien vers double_prod_exo.pdf <double_prod_exo.pdf>`_
|
||||
|
||||
`Lien vers fig/doubleProd_num.pdf <fig/doubleProd_num.pdf>`_
|
||||
|
||||
`Lien vers fig/doubleProd.pdf <fig/doubleProd.pdf>`_
|
||||
|
||||
`Lien vers fig/simpleProd.pdf <fig/simpleProd.pdf>`_
|
||||
BIN
4e/Nombres_Calculs/Cal_litt/mot_croise/fig/grille.pdf
Normal file
867
4e/Nombres_Calculs/Cal_litt/mot_croise/fig/grille.svg
Normal file
@@ -0,0 +1,867 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
version="1.1"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2">
|
||||
<defs
|
||||
id="defs4">
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect4135" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3994" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3990" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3986" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3980" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3976" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3972" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3968" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3964" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3771" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3767" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3763" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3771-0" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3767-1" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3763-6" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3771-9" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3767-7" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3763-7" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3771-6" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3767-3" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3763-8" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3763-78" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3767-71" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3771-7" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3763-6-9" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3767-1-2" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3771-0-3" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3763-7-3" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3767-7-2" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3771-9-7" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3763-2" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3767-2" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3771-5" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3763-6-2" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3767-1-3" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3771-0-0" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3763-7-6" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3767-7-29" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3771-9-4" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3994-6" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3990-6" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3986-4" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3976-9" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3972-8" />
|
||||
</defs>
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
transform="translate(0,-308.2677)"
|
||||
id="layer1">
|
||||
<text
|
||||
x="125.67482"
|
||||
y="284.94589"
|
||||
transform="translate(0,308.2677)"
|
||||
id="text3391"
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="125.67482"
|
||||
y="284.94589"
|
||||
id="tspan3393"></tspan></text>
|
||||
<rect
|
||||
width="606.18756"
|
||||
height="50.515629"
|
||||
x="213.12383"
|
||||
y="581.98566"
|
||||
id="rect3759"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<g
|
||||
transform="matrix(0,1.6838543,-1.6838543,0,1178.9815,178.92016)"
|
||||
id="g3842"
|
||||
style="stroke-width:2.26907802;stroke-miterlimit:4;stroke-dasharray:none">
|
||||
<path
|
||||
d="m 270,234.09448 0,30"
|
||||
transform="translate(0,308.2677)"
|
||||
id="path3761"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 300,234.09448 0,30"
|
||||
transform="translate(0,308.2677)"
|
||||
id="path3765"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 330,234.09448 0,30"
|
||||
transform="translate(0,308.2677)"
|
||||
id="path3769"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 359.10449,543.60649 0,30"
|
||||
id="path3761-1"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 389.10449,543.60649 0,30"
|
||||
id="path3765-0"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 419.10449,543.60649 0,30"
|
||||
id="path3769-1"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 450,542.36218 0,30"
|
||||
id="path3761-2"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 480,542.36218 0,30"
|
||||
id="path3765-5"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 510,542.36218 0,30"
|
||||
id="path3769-2"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
<path
|
||||
d="m 668.36063,579.60851 0,50.51563"
|
||||
id="path3761-18"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 718.87627,579.60851 0,50.51563"
|
||||
id="path3765-3"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 769.3919,579.60851 0,50.51563"
|
||||
id="path3769-6"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
width="50.515629"
|
||||
height="454.64069"
|
||||
x="213.12383"
|
||||
y="581.98566"
|
||||
id="rect3840"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<g
|
||||
transform="matrix(-1.6838543,0,0,-1.6838543,1122.278,1547.6887)"
|
||||
id="g3842-4"
|
||||
style="stroke-width:2.26907802;stroke-miterlimit:4;stroke-dasharray:none">
|
||||
<path
|
||||
d="m 270,234.09448 0,30"
|
||||
transform="translate(0,308.2677)"
|
||||
id="path3761-14"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 300,234.09448 0,30"
|
||||
transform="translate(0,308.2677)"
|
||||
id="path3765-6"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 330,234.09448 0,30"
|
||||
transform="translate(0,308.2677)"
|
||||
id="path3769-7"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 359.10449,543.60649 0,30"
|
||||
id="path3761-1-8"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 389.10449,543.60649 0,30"
|
||||
id="path3765-0-3"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 419.10449,543.60649 0,30"
|
||||
id="path3769-1-0"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 450,542.36218 0,30"
|
||||
id="path3761-2-8"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 480,542.36218 0,30"
|
||||
id="path3765-5-6"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 510,542.36218 0,30"
|
||||
id="path3769-2-8"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.26907802;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
<rect
|
||||
width="353.60941"
|
||||
height="50.515629"
|
||||
x="213.12383"
|
||||
y="885.07941"
|
||||
id="rect3960"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 314.15509,885.0794 0,50.51563"
|
||||
id="path3962"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 364.67072,885.0794 0,50.51563"
|
||||
id="path3966"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 415.18635,885.0794 0,50.51563"
|
||||
id="path3970"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 465.70198,935.59503 0,-50.51563"
|
||||
id="path3974"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 516.21761,885.0794 0,50.51563"
|
||||
id="path3978"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
width="50.515629"
|
||||
height="303.09378"
|
||||
x="415.18637"
|
||||
y="683.01691"
|
||||
id="rect3982"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 415.18635,733.53251 50.51563,0"
|
||||
id="path3984"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 415.18635,784.04813 50.51563,0"
|
||||
id="path3988"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 415.18635,834.56377 50.51563,0"
|
||||
id="path3992"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 567.31747,431.67672 -50.51563,0"
|
||||
id="path3761-9"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 565.2222,682.74696 -50.51563,0"
|
||||
id="path3769-1-4"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 567.31743,734.7705 -50.51563,0"
|
||||
id="path3761-2-0"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 567.31743,785.28612 -50.51563,0"
|
||||
id="path3765-5-7"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 567.31743,835.80175 -50.51563,0"
|
||||
id="path3769-2-7"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<rect
|
||||
width="50.515629"
|
||||
height="454.64069"
|
||||
x="516.50134"
|
||||
y="381.04395"
|
||||
id="rect3840-6"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<rect
|
||||
width="50.515629"
|
||||
height="303.09378"
|
||||
x="472.57022"
|
||||
y="-819.4776"
|
||||
transform="matrix(0,1,-1,0,0,0)"
|
||||
id="rect3982-8"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 768.12151,474.01364 0,50.51563"
|
||||
id="path3984-6"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 717.60588,474.01364 0,50.51563"
|
||||
id="path3988-9"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 667.09026,474.01364 0,50.51563"
|
||||
id="path3992-3"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 619.52588,471.85374 0,50.51562"
|
||||
id="path4133"
|
||||
style="fill:none;stroke:#000000;stroke-width:3.82079673;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<text
|
||||
x="217.20471"
|
||||
y="602.85724"
|
||||
id="text4273"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="217.20471"
|
||||
y="602.85724"
|
||||
id="tspan4275">Bc</tspan></text>
|
||||
<text
|
||||
x="522.77112"
|
||||
y="602.85724"
|
||||
id="text4273-8"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="522.77112"
|
||||
y="602.85724"
|
||||
id="tspan4275-2">Bc</tspan></text>
|
||||
<text
|
||||
x="621.92749"
|
||||
y="494.34958"
|
||||
id="text4273-5"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="621.92749"
|
||||
y="494.34958"
|
||||
id="tspan4275-7">Bc</tspan></text>
|
||||
<text
|
||||
x="418.33188"
|
||||
y="754.13824"
|
||||
id="text4273-6"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="418.33188"
|
||||
y="754.13824"
|
||||
id="tspan4275-5">Bc</tspan></text>
|
||||
<text
|
||||
x="217.20471"
|
||||
y="705.40894"
|
||||
id="text4273-3"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="217.20471"
|
||||
y="705.40894"
|
||||
id="tspan4275-8">Bb</tspan></text>
|
||||
<text
|
||||
x="217.20471"
|
||||
y="960.25366"
|
||||
id="text4273-3-6"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="217.20471"
|
||||
y="960.25366"
|
||||
id="tspan4275-8-0">Ea</tspan></text>
|
||||
<text
|
||||
x="471.85754"
|
||||
y="903.73419"
|
||||
id="text4346"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="471.85754"
|
||||
y="903.73419"
|
||||
id="tspan4348">Ea</tspan></text>
|
||||
<text
|
||||
x="217.20471"
|
||||
y="903.73419"
|
||||
id="text4350"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="217.20471"
|
||||
y="903.73419"
|
||||
id="tspan4352">Dc</tspan></text>
|
||||
<text
|
||||
x="217.20471"
|
||||
y="1011.3103"
|
||||
id="text4354"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="217.20471"
|
||||
y="1011.3103"
|
||||
id="tspan4356">Dc</tspan></text>
|
||||
<text
|
||||
x="523.96466"
|
||||
y="903.73419"
|
||||
id="text4358"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="523.96466"
|
||||
y="903.73419"
|
||||
id="tspan4360">Dc</tspan></text>
|
||||
<text
|
||||
x="522.77112"
|
||||
y="808.06842"
|
||||
id="text4362"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="522.77112"
|
||||
y="808.06842"
|
||||
id="tspan4364">Dc</tspan></text>
|
||||
<text
|
||||
x="727.85754"
|
||||
y="494.34958"
|
||||
id="text4366"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="727.85754"
|
||||
y="494.34958"
|
||||
id="tspan4368">Dc</tspan></text>
|
||||
<text
|
||||
x="418.33188"
|
||||
y="706.23114"
|
||||
id="text4370"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="418.33188"
|
||||
y="706.23114"
|
||||
id="tspan4372">Fc</tspan></text>
|
||||
<text
|
||||
x="522.77112"
|
||||
y="657.62994"
|
||||
id="text4374"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="522.77112"
|
||||
y="657.62994"
|
||||
id="tspan4376">Fc</tspan></text>
|
||||
<text
|
||||
x="578.25958"
|
||||
y="495.22641"
|
||||
id="text4378"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="578.25958"
|
||||
y="495.22641"
|
||||
id="tspan4380">Cb</tspan></text>
|
||||
<text
|
||||
x="217.89499"
|
||||
y="756.46558"
|
||||
id="text4382"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="217.89499"
|
||||
y="756.46558"
|
||||
id="tspan4384">Cb</tspan></text>
|
||||
<text
|
||||
x="422.16806"
|
||||
y="603.73407"
|
||||
id="text4386"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="422.16806"
|
||||
y="603.73407"
|
||||
id="tspan4388">Cb</tspan></text>
|
||||
<text
|
||||
x="324.66226"
|
||||
y="631.64062"
|
||||
id="text4390"
|
||||
xml:space="preserve"
|
||||
style="font-size:85.03771973px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="324.66226"
|
||||
y="631.64062"
|
||||
id="tspan4392">-</tspan></text>
|
||||
<text
|
||||
x="622.39941"
|
||||
y="603.0531"
|
||||
id="text4394"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="622.39941"
|
||||
y="603.0531"
|
||||
id="tspan4396">Ga</tspan></text>
|
||||
<text
|
||||
x="772.61847"
|
||||
y="603.0531"
|
||||
id="text4394-7"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="772.61847"
|
||||
y="603.0531"
|
||||
id="tspan4396-6">Ga</tspan></text>
|
||||
<text
|
||||
x="419.02216"
|
||||
y="903.93005"
|
||||
id="text4394-7-1"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="419.02216"
|
||||
y="903.93005"
|
||||
id="tspan4396-6-0">Ga</tspan></text>
|
||||
<text
|
||||
x="217.89499"
|
||||
y="807.1817"
|
||||
id="text4394-7-2"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="217.89499"
|
||||
y="807.1817"
|
||||
id="tspan4396-6-7">Ga</tspan></text>
|
||||
<text
|
||||
x="371.07242"
|
||||
y="903.79016"
|
||||
id="text4449"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="371.07242"
|
||||
y="903.79016"
|
||||
id="tspan4451">Ac</tspan></text>
|
||||
<text
|
||||
x="275.98767"
|
||||
y="602.91321"
|
||||
id="text4453"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="275.98767"
|
||||
y="602.91321"
|
||||
id="tspan4455">Ac</tspan></text>
|
||||
<text
|
||||
x="675.34357"
|
||||
y="494.40555"
|
||||
id="text4457"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="675.34357"
|
||||
y="494.40555"
|
||||
id="tspan4459">Ac</tspan></text>
|
||||
<text
|
||||
x="217.20471"
|
||||
y="858.14038"
|
||||
id="text4461"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="217.20471"
|
||||
y="858.14038"
|
||||
id="tspan4463">Fa</tspan></text>
|
||||
<text
|
||||
x="420.18817"
|
||||
y="810.19458"
|
||||
id="text4465"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="420.18817"
|
||||
y="810.19458"
|
||||
id="tspan4467">Ac</tspan></text>
|
||||
<text
|
||||
x="522.77112"
|
||||
y="709.16705"
|
||||
id="text4469"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="522.77112"
|
||||
y="709.16705"
|
||||
id="tspan4471">Ba</tspan></text>
|
||||
<text
|
||||
x="418.33188"
|
||||
y="867.24542"
|
||||
id="text4473"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="418.33188"
|
||||
y="867.24542"
|
||||
id="tspan4475">Ba</tspan></text>
|
||||
<text
|
||||
x="523.46143"
|
||||
y="409.65015"
|
||||
id="text4477"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="523.46143"
|
||||
y="409.65015"
|
||||
id="tspan4479">Gc</tspan></text>
|
||||
<text
|
||||
x="217.20471"
|
||||
y="654.35229"
|
||||
id="text4481"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="217.20471"
|
||||
y="654.35229"
|
||||
id="tspan4483">Db</tspan></text>
|
||||
<text
|
||||
x="522.77112"
|
||||
y="766.2179"
|
||||
id="text4485"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="522.77112"
|
||||
y="766.2179"
|
||||
id="tspan4487">Db</tspan></text>
|
||||
<text
|
||||
x="571.27698"
|
||||
y="603.73407"
|
||||
id="text4489"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="571.27698"
|
||||
y="603.73407"
|
||||
id="tspan4491">Db</tspan></text>
|
||||
<text
|
||||
x="419.02216"
|
||||
y="955.19879"
|
||||
id="text4493"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="419.02216"
|
||||
y="955.19879"
|
||||
id="tspan4495">Cc</tspan></text>
|
||||
<text
|
||||
x="775.1825"
|
||||
y="494.54547"
|
||||
id="text4497"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="775.1825"
|
||||
y="494.54547"
|
||||
id="tspan4499">Cc</tspan></text>
|
||||
<text
|
||||
x="522.77112"
|
||||
y="495.22641"
|
||||
id="text4501"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="522.77112"
|
||||
y="495.22641"
|
||||
id="tspan4503">Eb</tspan></text>
|
||||
<text
|
||||
x="270.10461"
|
||||
y="904.61102"
|
||||
id="text4505"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="270.10461"
|
||||
y="904.61102"
|
||||
id="tspan4507">Fb</tspan></text>
|
||||
<text
|
||||
x="319.18365"
|
||||
y="904.61102"
|
||||
id="text4509"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="319.18365"
|
||||
y="904.61102"
|
||||
id="tspan4511">Bb</tspan></text>
|
||||
<text
|
||||
x="471.89127"
|
||||
y="602.85724"
|
||||
id="text4513"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="471.89127"
|
||||
y="602.85724"
|
||||
id="tspan4515">Da</tspan></text>
|
||||
<text
|
||||
x="522.77112"
|
||||
y="448.87262"
|
||||
id="text4517"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="522.77112"
|
||||
y="448.87262"
|
||||
id="tspan4519">Ec</tspan></text>
|
||||
<text
|
||||
x="673.07874"
|
||||
y="603.73407"
|
||||
id="text4521"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="673.07874"
|
||||
y="603.73407"
|
||||
id="tspan4523">Ab</tspan></text>
|
||||
<text
|
||||
x="372.85529"
|
||||
y="603.0531"
|
||||
id="text4525"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="372.85529"
|
||||
y="603.0531"
|
||||
id="tspan4527">Ca</tspan></text>
|
||||
<text
|
||||
x="164.5502"
|
||||
y="620.12469"
|
||||
id="text3399"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="164.5502"
|
||||
y="620.12469"
|
||||
id="tspan3401">1</tspan></text>
|
||||
<text
|
||||
x="523.46143"
|
||||
y="547.52295"
|
||||
id="text4529"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="523.46143"
|
||||
y="547.52295"
|
||||
id="tspan4531">Cb</tspan></text>
|
||||
<text
|
||||
x="724.08459"
|
||||
y="602.85724"
|
||||
id="text4533"
|
||||
xml:space="preserve"
|
||||
style="font-size:19.10398293px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="724.08459"
|
||||
y="602.85724"
|
||||
id="tspan4535">Fa</tspan></text>
|
||||
<path
|
||||
d="m 198.46668,257.2601 a 23.330721,23.330721 0 1 1 -46.66145,0 23.330721,23.330721 0 1 1 46.66145,0 z"
|
||||
transform="translate(-2.7722824,350.01497)"
|
||||
id="path4171"
|
||||
style="fill:none;stroke:#000000;stroke-width:3;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<text
|
||||
x="227.03996"
|
||||
y="561.4267"
|
||||
id="text3399-9"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="227.03996"
|
||||
y="561.4267"
|
||||
id="tspan3401-4">2</tspan></text>
|
||||
<path
|
||||
d="m 198.46668,257.2601 a 23.330721,23.330721 0 1 1 -46.66145,0 23.330721,23.330721 0 1 1 46.66145,0 z"
|
||||
transform="translate(59.717486,291.31704)"
|
||||
id="path4171-7"
|
||||
style="fill:none;stroke:#000000;stroke-width:3;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<text
|
||||
x="475.27884"
|
||||
y="511.03241"
|
||||
id="text3399-4"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="475.27884"
|
||||
y="511.03241"
|
||||
id="tspan3401-8">5</tspan></text>
|
||||
<path
|
||||
d="m 198.46668,257.2601 a 23.330721,23.330721 0 1 1 -46.66145,0 23.330721,23.330721 0 1 1 46.66145,0 z"
|
||||
transform="translate(310.20636,241.09846)"
|
||||
id="path4171-72"
|
||||
style="fill:none;stroke:#000000;stroke-width:3;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<text
|
||||
x="530.02826"
|
||||
y="361.71579"
|
||||
id="text3399-1"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="530.02826"
|
||||
y="361.71579"
|
||||
id="tspan3401-0">6</tspan></text>
|
||||
<path
|
||||
d="m 198.46668,257.2601 a 23.330721,23.330721 0 1 1 -46.66145,0 23.330721,23.330721 0 1 1 46.66145,0 z"
|
||||
transform="translate(364.97338,91.597276)"
|
||||
id="path4171-9"
|
||||
style="fill:none;stroke:#000000;stroke-width:3;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<text
|
||||
x="430.48386"
|
||||
y="669.05914"
|
||||
id="text3399-92"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="430.48386"
|
||||
y="669.05914"
|
||||
id="tspan3401-5">4</tspan></text>
|
||||
<path
|
||||
d="m 198.46668,257.2601 a 23.330721,23.330721 0 1 1 -46.66145,0 23.330721,23.330721 0 1 1 46.66145,0 z"
|
||||
transform="translate(265.10376,398.87913)"
|
||||
id="path4171-0"
|
||||
style="fill:none;stroke:#000000;stroke-width:3;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<text
|
||||
x="167.93547"
|
||||
y="922.89734"
|
||||
id="text3399-5"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="167.93547"
|
||||
y="922.89734"
|
||||
id="tspan3401-57">3</tspan></text>
|
||||
<path
|
||||
d="m 198.46668,257.2601 a 23.330721,23.330721 0 1 1 -46.66145,0 23.330721,23.330721 0 1 1 46.66145,0 z"
|
||||
transform="translate(2.3620102,652.77885)"
|
||||
id="path4171-00"
|
||||
style="fill:none;stroke:#000000;stroke-width:3;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 41 KiB |
17
4e/Nombres_Calculs/Cal_litt/mot_croise/index.rst
Normal file
@@ -0,0 +1,17 @@
|
||||
Notes sur un mot croisé avec des expressions à simplifier
|
||||
#########################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Nombres Calculs, Exo
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers mots_croise.pdf <mots_croise.pdf>`_
|
||||
|
||||
`Lien vers mots_croise.tex <mots_croise.tex>`_
|
||||
|
||||
`Lien vers fig/grille.pdf <fig/grille.pdf>`_
|
||||
BIN
4e/Nombres_Calculs/Cal_litt/mot_croise/mots_croise.pdf
Normal file
84
4e/Nombres_Calculs/Cal_litt/mot_croise/mots_croise.tex
Normal file
@@ -0,0 +1,84 @@
|
||||
\documentclass[a4paper,12pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classCours}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{Mots croisés et mathématiciens}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\quatreC}
|
||||
\date{27 mars 2014}
|
||||
|
||||
%\fancyhead[L]{<++classes++> : \Thetitle}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
On donne les expressions suivantes
|
||||
\begin{eqnarray*}
|
||||
A = 2(13x + 6)& \hspace{2cm} & B = 3x(5x + 1) + 1 \\
|
||||
C = (x - 1)(11x + 19)& \hspace{2cm} & D = (x + 1)(23x - 5) \\
|
||||
E = (2x + 5)^2 & \hspace{2cm} & F = 3(7x + 5) - 8 + 13x^2 \\
|
||||
F = (3x - 4)^2 &&
|
||||
\end{eqnarray*}
|
||||
|
||||
En suivant l'exemple suivant, remplir le mot croisé suivant pour découvrir le nom des grands mathématiciens.
|
||||
|
||||
\large\textbf{Exemple}
|
||||
\normalsize
|
||||
|
||||
\noindent\fbox{\parbox{\linewidth-2\fboxrule-2\fboxsep}{
|
||||
L'expression est $Z = (2x + 1)(3x + 4)$
|
||||
|
||||
\begin{itemize}
|
||||
\item On développe, réduit et on met l'expression sous la forme $ax^2 + bx + c$.
|
||||
\begin{eqnarray*}
|
||||
Z = (2x + 1)(3x-4) = (\cdots) = 6x^2 -5x - 4
|
||||
\end{eqnarray*}
|
||||
\item On identifie les coefficients
|
||||
\begin{eqnarray*}
|
||||
Za = 6 \hspace{2cm} Zb = -5 \hspace{2cm} Zc = -4
|
||||
\end{eqnarray*}
|
||||
\item On fait correspondre le chiffre à la lettre dans l'alphabet
|
||||
\begin{itemize}
|
||||
\item $Za = 6 \quad \longrightarrow$ 6e lettre de l'alphabet: F \\
|
||||
\item $Zb = -5 \quad \longrightarrow$ 5e lettre de l'alphabet: E \\
|
||||
\item $Zc = -4 \quad \longrightarrow$ 4e lettre de l'alphabet: D \\
|
||||
\end{itemize}
|
||||
\item On remplace dans la grille $Za$, $Zb$ et $Zc$ par la lettre correspondante.
|
||||
\end{itemize}
|
||||
}}
|
||||
|
||||
\vspace{1cm}
|
||||
\large\textbf{Réponses}
|
||||
\normalsize
|
||||
|
||||
Indiquer le nom des mathématiciens trouvés ainsi que l'époque à laquelle ils ont vécu.
|
||||
\vspace{0.3cm}
|
||||
\begin{enumerate}
|
||||
\item \parbox{1cm}{\dotfill} \hspace{5cm} Époque: \parbox{1cm}{\dotfill}
|
||||
\vspace{0.3cm}
|
||||
\item \parbox{1cm}{\dotfill} \hspace{5cm} Époque: \parbox{1cm}{\dotfill}
|
||||
\vspace{0.3cm}
|
||||
\item \parbox{1cm}{\dotfill} \hspace{5cm} Époque: \parbox{1cm}{\dotfill}
|
||||
\vspace{0.3cm}
|
||||
\item \parbox{1cm}{\dotfill} \hspace{5cm} Époque: \parbox{1cm}{\dotfill}
|
||||
\vspace{0.3cm}
|
||||
\item \parbox{1cm}{\dotfill} \hspace{5cm} Époque: \parbox{1cm}{\dotfill}
|
||||
\vspace{0.3cm}
|
||||
\item \parbox{1cm}{\dotfill} \hspace{5cm} Époque: \parbox{1cm}{\dotfill}
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\begin{center}
|
||||
\hspace*{-2cm}
|
||||
\includegraphics[scale=0.8]{./fig/grille}
|
||||
\end{center}
|
||||
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/Nombres_Calculs/Equation/Cours/balances.pdf
Normal file
110
4e/Nombres_Calculs/Equation/Cours/balances.tex
Normal file
@@ -0,0 +1,110 @@
|
||||
\documentclass[a4paper,10pt]{beamer}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[french]{babel}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{thumbpdf}
|
||||
\usepackage{wasysym}
|
||||
\usepackage{ucs}
|
||||
\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps,pgfshade}
|
||||
\usepackage{verbatim}
|
||||
\usepackage{subfig}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{multicol}
|
||||
\usepackage{eurosym}
|
||||
\usepackage{enumerate}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{L'équation $2x + 40 = 100$}
|
||||
|
||||
Deux balles et un boite de 40g pèse autant qu'une boite de 100g. \\ \textbf{Combien pèse une balle?}
|
||||
|
||||
\begin{multicols}{2}
|
||||
|
||||
|
||||
\includegraphics[scale=0.2]{./fig/balance1_1}
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
\onslide<3->{\includegraphics[scale=0.2]{./fig/balance}}
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
\onslide<4->{\includegraphics[scale=0.2]{./fig/balance}}
|
||||
|
||||
|
||||
\columnbreak
|
||||
|
||||
\onslide<2->{$2x + 40 = 100$}
|
||||
|
||||
\end{multicols}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{L'équation $3x = 2x + 80$}
|
||||
|
||||
Trois balles pèse autant que deux balles et une boite de 80g. \\ \textbf{Combien pèse une balle?}
|
||||
|
||||
\begin{multicols}{2}
|
||||
|
||||
|
||||
\includegraphics[scale=0.2]{./fig/balance2_1}
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
\onslide<3->{\includegraphics[scale=0.2]{./fig/balance}}
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
\onslide<4->{\includegraphics[scale=0.2]{./fig/balance}}
|
||||
|
||||
|
||||
\columnbreak
|
||||
|
||||
\onslide<2->{$3x = 2x + 80$}
|
||||
|
||||
\end{multicols}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{L'équation $3x +10 = x + 80$}
|
||||
|
||||
Trois balles et une boite de 1àg pèse autant qu'une balle et une boite de 80g. \\ \textbf{Combien pèse une balle?}
|
||||
|
||||
\begin{multicols}{2}
|
||||
|
||||
|
||||
\includegraphics[scale=0.2]{./fig/balance3_1}
|
||||
|
||||
\onslide<3->{\includegraphics[scale=0.2]{./fig/balance}}
|
||||
|
||||
\onslide<4->{\includegraphics[scale=0.2]{./fig/balance}}
|
||||
|
||||
\onslide<5->{\includegraphics[scale=0.2]{./fig/balance}}
|
||||
|
||||
\columnbreak
|
||||
|
||||
\onslide<2->{$3x + 10 = x + 80$}
|
||||
|
||||
\end{multicols}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Éxercices}
|
||||
Résoudre les équations suivantes
|
||||
|
||||
|
||||
\begin{multicols}{2}
|
||||
\begin{enumerate}[a)]
|
||||
\item $4x + 90 = 150$
|
||||
\item $4x = x + 11$
|
||||
\item $6x + 9 = 4x + 21$
|
||||
\item $3x - 90 = 30$
|
||||
\item $6x = 2x -16$
|
||||
\item $-2x + 10 = 1$
|
||||
\end{enumerate}
|
||||
\end{multicols}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
||||
99
4e/Nombres_Calculs/Equation/Cours/fig/.balance.svg
Normal file
@@ -0,0 +1,99 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
version="1.2"
|
||||
width="789.68939"
|
||||
height="336.81198"
|
||||
id="svg2">
|
||||
<defs
|
||||
id="defs4" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
transform="translate(-99.621565,-512.31213)"
|
||||
id="layer1">
|
||||
<g
|
||||
id="g3829">
|
||||
<path
|
||||
d="m 373.23209,588.72141 -439.585517,0 219.792757,-380.69222 z"
|
||||
transform="matrix(0.34128682,0,0,0.39959873,442.69215,601.37179)"
|
||||
id="path3757"
|
||||
style="fill:none;stroke:#000000;stroke-width:13.53936195;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 113.30701,679.57802 763.50392,0"
|
||||
id="path3759"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
<rect
|
||||
width="126.16165"
|
||||
height="62.132664"
|
||||
x="730.17157"
|
||||
y="607.46777"
|
||||
id="rect3805"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<text
|
||||
x="224.36884"
|
||||
y="343.12567"
|
||||
transform="translate(0,308.2677)"
|
||||
id="text3811"
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="224.36884"
|
||||
y="343.12567"
|
||||
id="tspan3813" /></text>
|
||||
<text
|
||||
x="771.05511"
|
||||
y="652.84076"
|
||||
id="text3823"
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="771.05511"
|
||||
y="652.84076"
|
||||
id="tspan3825">35</tspan></text>
|
||||
<g
|
||||
transform="translate(9.1502679,1.5889559)"
|
||||
id="g3890-7">
|
||||
<path
|
||||
d="m 269.24259,173.7634 a 55.00655,55.00655 0 1 1 -110.0131,0 55.00655,55.00655 0 1 1 110.0131,0 z"
|
||||
transform="matrix(0.68535305,0,0,0.68535305,75.37019,517.10492)"
|
||||
id="path3765-6"
|
||||
style="fill:none;stroke:#000000;stroke-width:7.29550982;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<text
|
||||
x="211.26001"
|
||||
y="650.47156"
|
||||
id="text3807-8"
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="211.26001"
|
||||
y="650.47156"
|
||||
id="tspan3809-0">X</tspan></text>
|
||||
</g>
|
||||
<flowRoot
|
||||
transform="translate(99.621565,512.31213)"
|
||||
id="flowRoot4180"
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><flowRegion
|
||||
id="flowRegion4182"><rect
|
||||
width="169.36227"
|
||||
height="117.25081"
|
||||
x="489.2688"
|
||||
y="73.35955"
|
||||
id="rect4184" /></flowRegion><flowPara
|
||||
id="flowPara4186"></flowPara></flowRoot> </g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 4.2 KiB |
72
4e/Nombres_Calculs/Equation/Cours/fig/balance.pdf
Normal file
@@ -0,0 +1,72 @@
|
||||
%PDF-1.5
|
||||
%<25><><EFBFBD><EFBFBD>
|
||||
3 0 obj
|
||||
<< /Length 4 0 R
|
||||
/Filter /FlateDecode
|
||||
>>
|
||||
stream
|
||||
x<EFBFBD>u<EFBFBD>A
|
||||
<EFBFBD>@E<>9ſ<39>1<EFBFBD>d<EFBFBD>3'
|
||||
.<2E>Kq!
|
||||
<EFBFBD><EFBFBD>Eq<EFBFBD><EFBFBD><EFBFBD>t'<27><10>'<27>O$X<><58><EFBFBD><EFBFBD>"<22><><EFBFBD><EFBFBD>RM<52>0<EFBFBD><30><EFBFBD><EFBFBD>I<EFBFBD>3<EFBFBD>7r<37>1<EFBFBD>]<5D>K<EFBFBD><4B><EFBFBD>Fc<46><63>ؽ<EFBFBD><D8BD>q}<7D><>p)<29><>W<EFBFBD>L<><4C>ꏌ<EFBFBD>N<EFBFBD>Š<EFBFBD>q<EFBFBD><<3C><>!
|
||||
<EFBFBD>h<EFBFBD>i<EFBFBD><EFBFBD><EFBFBD><EFBFBD>p<0B><>q<EFBFBD><14><>tQ|<7C><>E4<45><07>(+<2B>
|
||||
endstream
|
||||
endobj
|
||||
4 0 obj
|
||||
149
|
||||
endobj
|
||||
2 0 obj
|
||||
<<
|
||||
/ExtGState <<
|
||||
/a0 << /CA 1 /ca 1 >>
|
||||
>>
|
||||
>>
|
||||
endobj
|
||||
5 0 obj
|
||||
<< /Type /Page
|
||||
/Parent 1 0 R
|
||||
/MediaBox [ 0 0 631.751526 269.449585 ]
|
||||
/Contents 3 0 R
|
||||
/Group <<
|
||||
/Type /Group
|
||||
/S /Transparency
|
||||
/I true
|
||||
/CS /DeviceRGB
|
||||
>>
|
||||
/Resources 2 0 R
|
||||
>>
|
||||
endobj
|
||||
1 0 obj
|
||||
<< /Type /Pages
|
||||
/Kids [ 5 0 R ]
|
||||
/Count 1
|
||||
>>
|
||||
endobj
|
||||
6 0 obj
|
||||
<< /Creator (cairo 1.12.16 (http://cairographics.org))
|
||||
/Producer (cairo 1.12.16 (http://cairographics.org))
|
||||
>>
|
||||
endobj
|
||||
7 0 obj
|
||||
<< /Type /Catalog
|
||||
/Pages 1 0 R
|
||||
>>
|
||||
endobj
|
||||
xref
|
||||
0 8
|
||||
0000000000 65535 f
|
||||
0000000563 00000 n
|
||||
0000000263 00000 n
|
||||
0000000015 00000 n
|
||||
0000000241 00000 n
|
||||
0000000335 00000 n
|
||||
0000000628 00000 n
|
||||
0000000757 00000 n
|
||||
trailer
|
||||
<< /Size 8
|
||||
/Root 7 0 R
|
||||
/Info 6 0 R
|
||||
>>
|
||||
startxref
|
||||
809
|
||||
%%EOF
|
||||
151
4e/Nombres_Calculs/Equation/Cours/fig/balance.svg
Normal file
@@ -0,0 +1,151 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="789.68939"
|
||||
height="336.81198"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname=".balance.svg">
|
||||
<defs
|
||||
id="defs4" />
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.6908268"
|
||||
inkscape:cx="426.55953"
|
||||
inkscape:cy="168.80918"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
guidetolerance="20"
|
||||
fit-margin-top="10"
|
||||
fit-margin-left="10"
|
||||
fit-margin-bottom="10"
|
||||
fit-margin-right="10"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(-99.621565,-512.31213)">
|
||||
<g
|
||||
id="g3829">
|
||||
<path
|
||||
inkscape:transform-center-y="-36.557726"
|
||||
transform="matrix(0.34128682,0,0,0.39959873,442.69215,601.37179)"
|
||||
d="m 373.23209,588.72141 -439.585517,0 219.792757,-380.69222 z"
|
||||
inkscape:randomized="0"
|
||||
inkscape:rounded="0"
|
||||
inkscape:flatsided="true"
|
||||
sodipodi:arg2="1.5707963"
|
||||
sodipodi:arg1="0.52359878"
|
||||
sodipodi:r2="126.89741"
|
||||
sodipodi:r1="253.79482"
|
||||
sodipodi:cy="461.82401"
|
||||
sodipodi:cx="153.43933"
|
||||
sodipodi:sides="3"
|
||||
id="path3757"
|
||||
style="fill:none;stroke:#000000;stroke-width:13.53936195;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
sodipodi:type="star" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3759"
|
||||
d="m 113.30701,679.57802 763.50392,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="rect3805"
|
||||
width="126.16165"
|
||||
height="62.132664"
|
||||
x="730.17157"
|
||||
y="607.46777" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="224.36884"
|
||||
y="343.12567"
|
||||
id="text3811"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3813"
|
||||
x="224.36884"
|
||||
y="343.12567" /></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="771.05511"
|
||||
y="652.84076"
|
||||
id="text3823"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3825"
|
||||
x="771.05511"
|
||||
y="652.84076">35</tspan></text>
|
||||
<g
|
||||
id="g3890-7"
|
||||
transform="translate(9.1502679,1.5889559)">
|
||||
<path
|
||||
transform="matrix(0.68535305,0,0,0.68535305,75.37019,517.10492)"
|
||||
d="m 269.24259,173.7634 c 0,30.37928 -24.62727,55.00655 -55.00655,55.00655 -30.37928,0 -55.00655,-24.62727 -55.00655,-55.00655 0,-30.37928 24.62727,-55.00655 55.00655,-55.00655 30.37928,0 55.00655,24.62727 55.00655,55.00655 z"
|
||||
sodipodi:ry="55.00655"
|
||||
sodipodi:rx="55.00655"
|
||||
sodipodi:cy="173.7634"
|
||||
sodipodi:cx="214.23604"
|
||||
id="path3765-6"
|
||||
style="fill:none;stroke:#000000;stroke-width:7.29550982;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
sodipodi:type="arc" />
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3807-8"
|
||||
y="650.47156"
|
||||
x="211.26001"
|
||||
style="font-size:40px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="650.47156"
|
||||
x="211.26001"
|
||||
id="tspan3809-0"
|
||||
sodipodi:role="line">X</tspan></text>
|
||||
</g>
|
||||
<flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot4180"
|
||||
style="fill:black;stroke:none;stroke-opacity:1;stroke-width:1px;stroke-linejoin:miter;stroke-linecap:butt;fill-opacity:1;font-family:Droid Sans;font-style:normal;font-weight:normal;font-size:40px;line-height:125%;letter-spacing:0px;word-spacing:0px;-inkscape-font-specification:Droid Sans;font-stretch:normal;font-variant:normal"><flowRegion
|
||||
id="flowRegion4182"><rect
|
||||
id="rect4184"
|
||||
width="169.36227"
|
||||
height="117.25081"
|
||||
x="489.2688"
|
||||
y="73.35955" /></flowRegion><flowPara
|
||||
id="flowPara4186"></flowPara></flowRoot> </g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 6.0 KiB |
BIN
4e/Nombres_Calculs/Equation/Cours/fig/balance1_1.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/Cours/fig/balance1_2.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/Cours/fig/balance1_3.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/Cours/fig/balance2_1.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/Cours/fig/balance2_2.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/Cours/fig/balance3_1.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/Cours/fig/balance3_2.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/Cours/fig/balance3_3.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/Cours/fig/balance3_4.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/Cours/fig/grille_balance.pdf
Normal file
37
4e/Nombres_Calculs/Equation/Cours/index.rst
Normal file
@@ -0,0 +1,37 @@
|
||||
Notes sur un support de cours pour introduire les équations
|
||||
###########################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Nombres Calculs,Cours
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers balances.tex <balances.tex>`_
|
||||
|
||||
`Lien vers balances.pdf <balances.pdf>`_
|
||||
|
||||
`Lien vers fig/balance3_1.pdf <fig/balance3_1.pdf>`_
|
||||
|
||||
`Lien vers fig/balance1_2.pdf <fig/balance1_2.pdf>`_
|
||||
|
||||
`Lien vers fig/balance.pdf <fig/balance.pdf>`_
|
||||
|
||||
`Lien vers fig/balance2_2.pdf <fig/balance2_2.pdf>`_
|
||||
|
||||
`Lien vers fig/balance2_1.pdf <fig/balance2_1.pdf>`_
|
||||
|
||||
`Lien vers fig/balance3_3.pdf <fig/balance3_3.pdf>`_
|
||||
|
||||
`Lien vers fig/balance3_2.pdf <fig/balance3_2.pdf>`_
|
||||
|
||||
`Lien vers fig/balance3_4.pdf <fig/balance3_4.pdf>`_
|
||||
|
||||
`Lien vers fig/balance1_1.pdf <fig/balance1_1.pdf>`_
|
||||
|
||||
`Lien vers fig/grille_balance.pdf <fig/grille_balance.pdf>`_
|
||||
|
||||
`Lien vers fig/balance1_3.pdf <fig/balance1_3.pdf>`_
|
||||
BIN
4e/Nombres_Calculs/Equation/decouverte/equation.pdf
Normal file
76
4e/Nombres_Calculs/Equation/decouverte/equation.tex
Normal file
@@ -0,0 +1,76 @@
|
||||
\documentclass[a4paper,10pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
|
||||
% Title Page
|
||||
\title{Pourcentage - Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{empty}
|
||||
|
||||
|
||||
\begin{Exo}
|
||||
Dans un magasine, le prix de certains meubles ont été effacé.
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.3]{./fig/meubles}
|
||||
\end{center}
|
||||
|
||||
Heureusement, la page des compositions de meubles nous permettent de retrouver les prix manquants.
|
||||
|
||||
\begin{enumerate}
|
||||
\item \includegraphics[scale=0.2]{./fig/compo1} coûte 100\euro. Combien coûte un grand meuble gris?
|
||||
\item \includegraphics[scale=0.2]{./fig/compo2} coûte 150\euro. Combien coûte un meuble noir?
|
||||
\item \includegraphics[scale=0.2]{./fig/compo3} coûte 140\euro. Combien coûte un meuble triangulaire?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Chez un joaillier, on sait que les perles rondes coûtent 30\euro. Il propose les colliers suivant:
|
||||
|
||||
\includegraphics[scale=0.2]{./fig/collier1}\hspace{1cm}
|
||||
\includegraphics[scale=0.2]{./fig/collier2}\hspace{1cm}
|
||||
\includegraphics[scale=0.2]{./fig/collier3}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Quel est le prix d'une perle carré?
|
||||
\item Quel est le prix d'une perle triangulaire?
|
||||
\item Quel est le prix d'une perle en étoile?
|
||||
|
||||
\item Le joaillier montre ces deux colliers et nous dit qu'ils ont le même prix.
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/collier4}
|
||||
\end{center}
|
||||
|
||||
Quel est le prix du pendentif?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Tom, Paul et Isabelle sont allé acheter des bonbons.
|
||||
\begin{itemize}
|
||||
\item Tom a acheté 5 carambars qui lui ont coûté 1,40\euro.
|
||||
\item Paul a acheté 10 bonbons à la fraise et 1 carambar. Il a payé 2\euro.
|
||||
\item Isabelle a acheté 2 bonbons à la menthe et 3 carambars. Elle a payé elle aussi 2\euro.
|
||||
\end{itemize}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Combien coûte un carambar?
|
||||
\item Combien coûte un bonbon à la fraise?
|
||||
\item Si j'achète 2 carambars et 10 bonbons à la menthe, combien vais-je payer?
|
||||
\item Ils retournent le lendemain au magasin. Cette fois ci, Tom a acheté 4 carambars et 2 bonbons au caramel tandis que Isabelle a acheté 4 bonbons au caramel et 2 carambar. Ils ont payé la même chose. Combien coûte un bonbon au caramel?
|
||||
\end{enumerate}
|
||||
|
||||
\end{Exo}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
152
4e/Nombres_Calculs/Equation/decouverte/fig/collier.svg
Normal file
@@ -0,0 +1,152 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg3887"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="Nouveau document 7">
|
||||
<defs
|
||||
id="defs3889" />
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.76589601"
|
||||
inkscape:cx="526.18109"
|
||||
inkscape:cy="372.04724"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1280"
|
||||
inkscape:window-height="974"
|
||||
inkscape:window-x="-8"
|
||||
inkscape:window-y="-8"
|
||||
inkscape:window-maximized="1" />
|
||||
<metadata
|
||||
id="metadata3892">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(0,-308.2677)">
|
||||
<path
|
||||
sodipodi:type="arc"
|
||||
style="opacity:0.98999999000000005;fill:none;fill-opacity:1;stroke:#000000;stroke-width:5;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path4403"
|
||||
sodipodi:cx="305.52451"
|
||||
sodipodi:cy="343.25677"
|
||||
sodipodi:rx="182.79243"
|
||||
sodipodi:ry="182.79243"
|
||||
d="m 488.31694,343.25677 a 182.79243,182.79243 0 1 1 -365.58487,0 182.79243,182.79243 0 1 1 365.58487,0 z"
|
||||
transform="translate(0,308.2677)" />
|
||||
<path
|
||||
sodipodi:type="arc"
|
||||
style="opacity:0.98999999;fill:#b0b0b0;fill-opacity:1;stroke:#000000;stroke-width:5;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path4405"
|
||||
sodipodi:cx="140.35847"
|
||||
sodipodi:cy="669.01904"
|
||||
sodipodi:rx="31.988676"
|
||||
sodipodi:ry="31.988676"
|
||||
d="m 172.34715,669.01904 a 31.988676,31.988676 0 1 1 -63.97735,0 31.988676,31.988676 0 1 1 63.97735,0 z"
|
||||
transform="translate(20.890564,440.13939)" />
|
||||
<rect
|
||||
style="opacity:0.98999999;fill:#b0b0b0;fill-opacity:1;stroke:#000000;stroke-width:5;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="rect4407"
|
||||
width="58.754711"
|
||||
height="58.754711"
|
||||
x="109.67547"
|
||||
y="690.69427" />
|
||||
<path
|
||||
sodipodi:type="star"
|
||||
style="opacity:0.98999999;fill:#b0b0b0;fill-opacity:1;stroke:#000000;stroke-width:5;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path4409"
|
||||
sodipodi:sides="3"
|
||||
sodipodi:cx="347.30563"
|
||||
sodipodi:cy="699.70203"
|
||||
sodipodi:r1="44.411648"
|
||||
sodipodi:r2="22.205824"
|
||||
sodipodi:arg1="0.52359878"
|
||||
sodipodi:arg2="1.5707963"
|
||||
inkscape:flatsided="false"
|
||||
inkscape:rounded="0"
|
||||
inkscape:randomized="0"
|
||||
d="m 385.76725,721.90785 -38.46162,0 -38.46161,0 19.23081,-33.30874 19.2308,-33.30873 19.23081,33.30873 z"
|
||||
transform="translate(20.890564,440.13939)"
|
||||
inkscape:transform-center-y="-11.102912" />
|
||||
<path
|
||||
sodipodi:type="star"
|
||||
style="opacity:0.98999999;fill:#b0b0b0;fill-opacity:1;stroke:#000000;stroke-width:5;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path4411"
|
||||
sodipodi:sides="5"
|
||||
sodipodi:cx="447.84146"
|
||||
sodipodi:cy="670.97754"
|
||||
sodipodi:r1="50.161831"
|
||||
sodipodi:r2="25.080915"
|
||||
sodipodi:arg1="0.78539816"
|
||||
sodipodi:arg2="1.4137167"
|
||||
inkscape:flatsided="false"
|
||||
inkscape:rounded="0"
|
||||
inkscape:randomized="0"
|
||||
d="m 483.31123,706.44731 -31.54625,-10.69764 -26.69651,19.92239 0.42573,-33.30802 -27.19699,-19.23354 31.80937,-9.88785 9.88784,-31.80937 19.23354,27.197 33.30802,-0.42574 -19.92239,26.69652 z"
|
||||
transform="translate(20.890564,440.13939)"
|
||||
inkscape:transform-center-x="2.4248684"
|
||||
inkscape:transform-center-y="-2.4248684" />
|
||||
<path
|
||||
sodipodi:type="spiral"
|
||||
style="fill:none;stroke:#000000;stroke-width:5.45509624;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
id="path4413"
|
||||
sodipodi:cx="705.05658"
|
||||
sodipodi:cy="494.71338"
|
||||
sodipodi:expansion="1"
|
||||
sodipodi:revolution="3"
|
||||
sodipodi:radius="73.128632"
|
||||
sodipodi:argument="-20.438208"
|
||||
sodipodi:t0="0"
|
||||
d="m 705.05658,494.71338 c -0.0655,-3.66597 4.90935,-1.89691 6.09308,-0.10881 3.20783,4.84564 -1.18153,10.708 -5.87547,12.29497 -8.39636,2.83872 -16.64437,-3.83821 -18.49685,-11.85974 -2.7186,-11.77193 6.50537,-22.68595 17.84402,-24.69875 15.11263,-2.68274 28.76809,9.1729 30.90063,23.8283 2.68358,18.44232 -11.83979,34.87037 -29.81258,37.10252 -21.76745,2.70342 -40.98414,-14.50615 -43.3044,-35.79685 -2.73434,-25.09036 17.17215,-47.10511 41.78112,-49.50629 28.41204,-2.77226 53.23088,19.83791 55.70818,47.7654 2.81487,31.73298 -22.50353,59.36 -53.74967,61.91006 -35.05346,2.86078 -65.49158,-25.16903 -68.11195,-59.73395 -2.90911,-38.37361 27.83445,-71.62499 65.71822,-74.31384"
|
||||
transform="matrix(0.73325926,0,0,0.73325926,88.520624,765.33699)" />
|
||||
<rect
|
||||
style="opacity:0.98999999;fill:#b0b0b0;fill-opacity:1;stroke:#000000;stroke-width:5;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="rect4407-4"
|
||||
width="58.754711"
|
||||
height="58.754711"
|
||||
x="195.1962"
|
||||
y="784.04895" />
|
||||
<rect
|
||||
style="opacity:0.98999999;fill:#b0b0b0;fill-opacity:1;stroke:#000000;stroke-width:5;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="rect4407-5"
|
||||
width="58.754711"
|
||||
height="58.754711"
|
||||
x="341.43018"
|
||||
y="791.88293" />
|
||||
<rect
|
||||
style="opacity:0.98999999;fill:#b0b0b0;fill-opacity:1;stroke:#000000;stroke-width:5;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="rect4407-51"
|
||||
width="58.754711"
|
||||
height="58.754711"
|
||||
x="439.35468"
|
||||
y="701.79242" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 6.5 KiB |
BIN
4e/Nombres_Calculs/Equation/decouverte/fig/collier1.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/decouverte/fig/collier2.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/decouverte/fig/collier3.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/decouverte/fig/collier4.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/decouverte/fig/compo1.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/decouverte/fig/compo2.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/decouverte/fig/compo3.pdf
Normal file
BIN
4e/Nombres_Calculs/Equation/decouverte/fig/meubles.pdf
Normal file
141
4e/Nombres_Calculs/Equation/decouverte/fig/meubles.svg
Normal file
@@ -0,0 +1,141 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1019.125"
|
||||
height="445.43546"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="meubles.pdf">
|
||||
<defs
|
||||
id="defs4" />
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.54157026"
|
||||
inkscape:cx="510.84583"
|
||||
inkscape:cy="-2.039534"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1280"
|
||||
inkscape:window-height="974"
|
||||
inkscape:window-x="-8"
|
||||
inkscape:window-y="-8"
|
||||
inkscape:window-maximized="1"
|
||||
fit-margin-top="10"
|
||||
fit-margin-left="10"
|
||||
fit-margin-bottom="10"
|
||||
fit-margin-right="10" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(-20.53125,-469.25)">
|
||||
<rect
|
||||
style="opacity:0.98999999;fill:#bfbfbf;fill-opacity:1;stroke:#000000;stroke-width:7.20318317;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="rect3753"
|
||||
width="106.58898"
|
||||
height="319.76697"
|
||||
x="34.12323"
|
||||
y="482.84875" />
|
||||
<rect
|
||||
style="opacity:0.98999999;fill:#727272;fill-opacity:1;stroke:#000000;stroke-width:7.20318317;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="rect3755"
|
||||
width="122.26383"
|
||||
height="122.26383"
|
||||
x="205.55367"
|
||||
y="680.35187" />
|
||||
<path
|
||||
sodipodi:type="star"
|
||||
style="opacity:0.98999999;fill:#dedede;fill-opacity:1;stroke:#000000;stroke-width:6;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path3759"
|
||||
sodipodi:sides="3"
|
||||
sodipodi:cx="364.27921"
|
||||
sodipodi:cy="206.16245"
|
||||
sodipodi:r1="78.61116"
|
||||
sodipodi:r2="39.30558"
|
||||
sodipodi:arg1="0.52359878"
|
||||
sodipodi:arg2="1.5707963"
|
||||
inkscape:flatsided="true"
|
||||
inkscape:rounded="0"
|
||||
inkscape:randomized="0"
|
||||
d="m 432.35847,245.46803 -136.15853,-1e-5 68.07927,-117.91674 z"
|
||||
transform="matrix(1.2005306,0,0,1.2005306,37.061868,507.92386)"
|
||||
inkscape:transform-center-y="-23.593763"
|
||||
inkscape:transform-center-x="-1.4275868e-005" />
|
||||
<path
|
||||
style="fill:#616161;fill-opacity:1;stroke:#000000;stroke-width:6.00265312;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
d="m 681.4945,803.21598 274.30987,0 66.61823,-66.61816 -402.06003,0 z"
|
||||
id="path3761"
|
||||
inkscape:connector-curvature="0" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:48.02122498px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Arial;-inkscape-font-specification:Arial"
|
||||
x="69.249275"
|
||||
y="904.60339"
|
||||
id="text3763"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3765"
|
||||
x="69.249275"
|
||||
y="904.60339">?</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:48.02122498px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Arial;-inkscape-font-specification:Arial"
|
||||
x="219.98888"
|
||||
y="904.07581"
|
||||
id="text3767"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3769"
|
||||
x="219.98888"
|
||||
y="904.07581">30</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:48.02122498px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Arial;-inkscape-font-specification:Arial"
|
||||
x="466.04907"
|
||||
y="904.60339"
|
||||
id="text3771"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3773"
|
||||
x="466.04907"
|
||||
y="904.60339">?</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:48.02122498px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Arial;-inkscape-font-specification:Arial"
|
||||
x="820.73041"
|
||||
y="904.60339"
|
||||
id="text3775"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3777"
|
||||
x="820.73041"
|
||||
y="904.60339">?</tspan></text>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 5.4 KiB |
31
4e/Nombres_Calculs/Equation/decouverte/index.rst
Normal file
@@ -0,0 +1,31 @@
|
||||
Notes sur des exercices de décourte des équations
|
||||
#################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Nombres Calculs, Exo
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers equation.tex <equation.tex>`_
|
||||
|
||||
`Lien vers equation.pdf <equation.pdf>`_
|
||||
|
||||
`Lien vers fig/compo2.pdf <fig/compo2.pdf>`_
|
||||
|
||||
`Lien vers fig/collier1.pdf <fig/collier1.pdf>`_
|
||||
|
||||
`Lien vers fig/collier2.pdf <fig/collier2.pdf>`_
|
||||
|
||||
`Lien vers fig/meubles.pdf <fig/meubles.pdf>`_
|
||||
|
||||
`Lien vers fig/collier3.pdf <fig/collier3.pdf>`_
|
||||
|
||||
`Lien vers fig/collier4.pdf <fig/collier4.pdf>`_
|
||||
|
||||
`Lien vers fig/compo1.pdf <fig/compo1.pdf>`_
|
||||
|
||||
`Lien vers fig/compo3.pdf <fig/compo3.pdf>`_
|
||||
BIN
4e/Nombres_Calculs/Equation/exo/exo_formel_1.pdf
Normal file
121
4e/Nombres_Calculs/Equation/exo/exo_formel_1.tex
Normal file
@@ -0,0 +1,121 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
|
||||
\usepackage{multicol}
|
||||
|
||||
% Title Page
|
||||
\title{Identités remarquables et équations- Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Troisième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{empty}
|
||||
|
||||
\begin{Exo}
|
||||
\exo{Équations de degrés 1}
|
||||
|
||||
\begin{center}
|
||||
\framebox{\parbox{0.4\textwidth}{
|
||||
Résoudre l'équation $3x + 5 = 0$.
|
||||
\begin{eqnarray*}
|
||||
3x + 5 = 0 & \hspace{1cm} & \mbox{On ajoute l'opposé de 5} \\
|
||||
3x + 5 \mathbf{+ (-5)} = \mathbf{-5} && \\
|
||||
3x = -5 & \hspace{1cm} & \mbox{On multiplie par l'inverse de 3} \\
|
||||
\mathbf{\frac{1}{3} \times }3x = \mathbf{ \frac{1}{3} \times }(-5) && \\
|
||||
x = \frac{-5}{3}
|
||||
\end{eqnarray*}
|
||||
La solution est $x = \frac{-5}{3}$.
|
||||
}}
|
||||
\end{center}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Résoudre l'équation $4x + 7 = 0$.
|
||||
\begin{eqnarray*}
|
||||
4x + 7 = 0 & \hspace{0.5cm} & \mbox{On ajoute l'opposé de \parbox{1cm}{\dotfill}} \\[0.5cm]
|
||||
4x + 7 + \parbox{1.5cm}{\dotfill}= \parbox{1.5cm}{\dotfill}&& \\[0.5cm]
|
||||
4x = \parbox{1cm}{\dotfill}& \hspace{0.5cm} & \mbox{On multiplie par l'inverse de \parbox{1cm}{\dotfill}} \\[0.5cm]
|
||||
\parbox{1.5cm}{\dotfill} \times 4x = \parbox{1.5cm}{\dotfill} \times \parbox{1cm}{\dotfill} && \\[0.5cm]
|
||||
x = \frac{\parbox{1cm}{\dotfill}}{\parbox{1cm}{\dotfill}}
|
||||
\end{eqnarray*}
|
||||
La solution est \parbox{2cm}{\dotfill}.
|
||||
|
||||
\item Résoudre les équations suivantes
|
||||
\begin{multicols}{2}
|
||||
\begin{enumerate}
|
||||
\item $2x + 1 = 0$
|
||||
\item $6x + 12 = 0$
|
||||
\item $3x - 3 = 0$
|
||||
\item $8x - 4 = 0$
|
||||
\columnbreak
|
||||
\item $-6x - 3 = 0$
|
||||
\item $9 + 3x = 0$
|
||||
\item $5 + 3x = 0$
|
||||
\item $\frac{2}{3}x + 3 = 0$
|
||||
\end{enumerate}
|
||||
\end{multicols}
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\eject
|
||||
|
||||
\setcounter{exo}{0}
|
||||
|
||||
\begin{Exo}
|
||||
\exo{Équations de degrés 1}
|
||||
|
||||
\begin{center}
|
||||
\framebox{\parbox{0.4\textwidth}{
|
||||
Résoudre l'équation $3x + 5 = 0$.
|
||||
\begin{eqnarray*}
|
||||
3x + 5 = 0 & \hspace{1cm} & \mbox{On ajoute l'opposé de 5} \\
|
||||
3x + 5 \mathbf{+ (-5)} = \mathbf{-5} && \\
|
||||
3x = -5 & \hspace{1cm} & \mbox{On multiplie par l'inverse de 3} \\
|
||||
\mathbf{\frac{1}{3} \times }3x = \mathbf{ \frac{1}{3} \times }(-5) && \\
|
||||
x = \frac{-5}{3}
|
||||
\end{eqnarray*}
|
||||
La solution est $x = \frac{-5}{3}$.
|
||||
}}
|
||||
\end{center}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Résoudre l'équation $4x + 7 = 0$.
|
||||
\begin{eqnarray*}
|
||||
4x + 7 = 0 & \hspace{0.5cm} & \mbox{On ajoute l'opposé de \parbox{1cm}{\dotfill}} \\[0.5cm]
|
||||
4x + 7 + \parbox{1.5cm}{\dotfill}= \parbox{1.5cm}{\dotfill}&& \\[0.5cm]
|
||||
4x = \parbox{1cm}{\dotfill}& \hspace{0.5cm} & \mbox{On multiplie par l'inverse de \parbox{1cm}{\dotfill}} \\[0.5cm]
|
||||
\parbox{1.5cm}{\dotfill} \times 4x = \parbox{1.5cm}{\dotfill} \times \parbox{1cm}{\dotfill} && \\[0.5cm]
|
||||
x = \frac{\parbox{1cm}{\dotfill}}{\parbox{1cm}{\dotfill}}
|
||||
\end{eqnarray*}
|
||||
La solution est \parbox{2cm}{\dotfill}.
|
||||
|
||||
\item Résoudre les équations suivantes
|
||||
\begin{multicols}{2}
|
||||
\begin{enumerate}
|
||||
\item $2x + 1 = 0$
|
||||
\item $6x + 12 = 0$
|
||||
\item $3x - 3 = 0$
|
||||
\item $8x - 4 = 0$
|
||||
\columnbreak
|
||||
\item $-6x - 3 = 0$
|
||||
\item $9 + 3x = 0$
|
||||
\item $5 + 3x = 0$
|
||||
\item $\frac{2}{3}x + 3 = 0$
|
||||
\end{enumerate}
|
||||
\end{multicols}
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\eject
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/Nombres_Calculs/Equation/exo/exo_pratique.pdf
Normal file
138
4e/Nombres_Calculs/Equation/exo/exo_pratique.tex
Normal file
@@ -0,0 +1,138 @@
|
||||
\documentclass[a4paper,10pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
|
||||
\usepackage{enumitem}
|
||||
\usepackage{multicol}
|
||||
|
||||
% Title Page
|
||||
\title{Équations- Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{empty}
|
||||
|
||||
|
||||
\begin{Exo}
|
||||
|
||||
Répondre aux 5 problèmes suivants.
|
||||
|
||||
\begin{enumerate}
|
||||
\item Un libraire vend des livres au prix unique de 12\euro. À la fin de la journée, il a gagné 1020\euro.\\
|
||||
Combien de livre le libraire a-t-il vendu?
|
||||
\item Lisa pèse 5 gâteaux identiques. La balance indique 556grammes. \\
|
||||
Combien pèse un gâteaux?
|
||||
\item Chloé mesure 1,54m. Elle a grandi de 7cm depuis l'été dernier. \\
|
||||
Combien mesurait-elle l'été dernier?
|
||||
\item Paul est au 36e étage. Il veut aller à l'étage 14.\\
|
||||
De combien d'étages Paul doit-il monter?
|
||||
\item Bastien achète un blouson à 99\euro\;, comme il lui reste de l'argent, il achète 2 T-shirts. Il dépense en tout 127\euro.\\
|
||||
Combien coûte un T-shirt?
|
||||
\end{enumerate}
|
||||
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Répondre au 5 problèmes suivants % (on pourra remplacer "$x$" par "bonbon" si on est bloqué)
|
||||
|
||||
\begin{enumerate}
|
||||
\item Si 12 "$x$" vaut 1020. Combien vaut un "$x$"?
|
||||
\item Si "$5x$" vaut 556. Combien vaut un "$x$"?
|
||||
\item Quand on ajoute 7 à "$x$", on obtient 154. Combien vaut "$x$"?
|
||||
\item Quand on ajoute 99 à 2 "$x$", on obtient 127. Combien vaut "$x$"?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Écrire les égalités en français (de la même façon que dans l'exercice 2) puis trouver la valeur de $x$ qui convient.
|
||||
|
||||
\begin{multicols}{2}
|
||||
\begin{enumerate}[label=\hspace{1cm}\arabic* )]
|
||||
\item $12x = 1020$ \\[0.2cm]
|
||||
\item $x + 7 = 154$\\[0.2cm]
|
||||
\item $10x = 1300$\\[0.2cm]
|
||||
\item $5x = 56$\\[0.2cm]
|
||||
\item $10 = 3x$\\[0.2cm]
|
||||
\item $x + 12 = 19$
|
||||
|
||||
\item $x + 7 = 145$ \\[0.2cm]
|
||||
\item $36 + x = 14$\\[0.2cm]
|
||||
\item $x + 50 = 12$\\[0.2cm]
|
||||
\item $x + 1200 = 1300$\\[0.2cm]
|
||||
\item $99 + 2x = 127$ \\[0.2cm]
|
||||
\item $2x + 1 = 3$
|
||||
\end{enumerate}
|
||||
\end{multicols}
|
||||
|
||||
\end{Exo}
|
||||
|
||||
\eject
|
||||
|
||||
\setcounter{exo}{0}
|
||||
|
||||
\begin{Exo}
|
||||
|
||||
Répondre aux 5 problèmes suivants.
|
||||
|
||||
\begin{enumerate}
|
||||
\item Un libraire vend des livres au prix unique de 12\euro. À la fin de la journée, il a gagné 1020\euro.\\
|
||||
Combien de livre le libraire a-t-il vendu?
|
||||
\item Lisa pèse 5 gâteaux identiques. La balance indique 556grammes. \\
|
||||
Combien pèse un gâteaux?
|
||||
\item Chloé mesure 1,54m. Elle a grandi de 7cm depuis l'été dernier. \\
|
||||
Combien mesurait-elle l'été dernier?
|
||||
\item Paul est au 36e étage. Il veut aller à l'étage 14.\\
|
||||
De combien d'étages Paul doit-il monter?
|
||||
\item Bastien achète un blouson à 99\euro\;, comme il lui reste de l'argent, il achète 2 T-shirts. Il dépense en tout 127\euro.\\
|
||||
Combien coûte un T-shirt?
|
||||
\end{enumerate}
|
||||
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Répondre au 5 problèmes suivants % (on pourra remplacer "$x$" par "bonbon" si on est bloqué)
|
||||
|
||||
\begin{enumerate}
|
||||
\item Si 12 "$x$" vaut 1020. Combien vaut un "$x$"?
|
||||
\item Si "$5x$" vaut 556. Combien vaut un "$x$"?
|
||||
\item Quand on ajoute 7 à "$x$", on obtient 154. Combien vaut "$x$"?
|
||||
\item Quand on ajoute 99 à 2 "$x$", on obtient 127. Combien vaut "$x$"?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Écrire les égalités en français (de la même façon que dans l'exercice 2) puis trouver la valeur de $x$ qui convient.
|
||||
|
||||
\begin{multicols}{2}
|
||||
\begin{enumerate}[label=\hspace{1cm}\arabic* )]
|
||||
\item $12x = 1020$ \\[0.2cm]
|
||||
\item $x + 7 = 154$\\[0.2cm]
|
||||
\item $10x = 1300$\\[0.2cm]
|
||||
\item $5x = 56$\\[0.2cm]
|
||||
\item $10 = 3x$\\[0.2cm]
|
||||
\item $x + 12 = 19$
|
||||
|
||||
\item $x + 7 = 145$ \\[0.2cm]
|
||||
\item $36 + x = 14$\\[0.2cm]
|
||||
\item $x + 50 = 12$\\[0.2cm]
|
||||
\item $x + 1200 = 1300$\\[0.2cm]
|
||||
\item $99 + 2x = 127$ \\[0.2cm]
|
||||
\item $2x + 1 = 3$
|
||||
\end{enumerate}
|
||||
\end{multicols}
|
||||
|
||||
\end{Exo}
|
||||
|
||||
\eject
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
19
4e/Nombres_Calculs/Equation/exo/index.rst
Normal file
@@ -0,0 +1,19 @@
|
||||
Notes sur des exercices autour des équations
|
||||
############################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Nombres Calculs,Exo
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers exo_formel_1.pdf <exo_formel_1.pdf>`_
|
||||
|
||||
`Lien vers exo_formel_1.tex <exo_formel_1.tex>`_
|
||||
|
||||
`Lien vers exo_pratique.pdf <exo_pratique.pdf>`_
|
||||
|
||||
`Lien vers exo_pratique.tex <exo_pratique.tex>`_
|
||||
15
4e/Nombres_Calculs/Equation/programme/index.rst
Normal file
@@ -0,0 +1,15 @@
|
||||
Notes sur le liens entre les équations et les programmes de calculs
|
||||
###################################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Nombres Calculs, Exo
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers programme.pdf <programme.pdf>`_
|
||||
|
||||
`Lien vers programme.tex <programme.tex>`_
|
||||
BIN
4e/Nombres_Calculs/Equation/programme/programme.pdf
Normal file
114
4e/Nombres_Calculs/Equation/programme/programme.tex
Normal file
@@ -0,0 +1,114 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
|
||||
\usepackage{multicol}
|
||||
|
||||
% Title Page
|
||||
\title{Identités remarquables et équations- Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Troisième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{empty}
|
||||
|
||||
\begin{Exo}
|
||||
Voici deux programmes de calcul:
|
||||
|
||||
\fbox{\colorbox{base2}{
|
||||
\begin{minipage}[h]{0.2\textwidth}
|
||||
\textbf{Programme A} \\ Choisir un nombre \\ Multiplier 6 \\ Ajouter par 3
|
||||
\end{minipage}
|
||||
}
|
||||
}
|
||||
\fbox{\colorbox{base2}{
|
||||
\begin{minipage}[h]{0.2\textwidth}
|
||||
\textbf{Programme B} \\ Choisir un nombre \\ Multiplier pas 4 \\ Enlever 20
|
||||
\end{minipage}
|
||||
}
|
||||
}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Appliquer, en expliquant les étapes, le programme A à 3 et à 10.
|
||||
\item Même chose avec le programme B.
|
||||
\item Appliquer le programme A à $x$.
|
||||
\item Même chose avec le programme B.
|
||||
\item Quel chiffre doit-on choisir au départ pour que le programme A donne 9?
|
||||
\item Quel chiffre doit-on choisir au départ pour que le programme A donne 21?
|
||||
\item Quel chiffre doit-on choisir au départ pour que le programme B donne 9?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
On a l'expression $5x + 6$
|
||||
|
||||
\begin{itemize}
|
||||
\item Écrire un programme qui permet de calculer l'expression.
|
||||
\item Quelle valeur de $x$ doit-on choisir pour que l'expression soit égale à 36?
|
||||
\item Quelle valeur de $x$ doit-on choisir pour que l'expression soit égale à 10?
|
||||
\end{itemize}
|
||||
|
||||
\end{Exo}
|
||||
|
||||
\eject
|
||||
|
||||
\begin{Exo}
|
||||
\exo{Équations de degrés 1}
|
||||
|
||||
\begin{center}
|
||||
\framebox{\parbox{0.4\textwidth}{
|
||||
Résoudre l'équation $3x + 5 = 0$.
|
||||
\begin{eqnarray*}
|
||||
3x + 5 = 0 & \hspace{1cm} & \mbox{On ajoute l'opposé de 5} \\
|
||||
3x + 5 \mathbf{+ (-5)} = \mathbf{-5} && \\
|
||||
3x = -5 & \hspace{1cm} & \mbox{On multiplie par l'inverse de 3} \\
|
||||
\mathbf{\frac{1}{3} \times }3x = \mathbf{ \frac{1}{3} \times }(-5) && \\
|
||||
x = \frac{-5}{3} \approx 1,6
|
||||
\end{eqnarray*}
|
||||
La solution est $x = \frac{-5}{3} \approx 1,6$.
|
||||
}}
|
||||
\end{center}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Résoudre l'équation $4x + 7 = 0$.
|
||||
\begin{eqnarray*}
|
||||
4x + 7 = 0 & \hspace{0.5cm} & \mbox{On ajoute l'opposé de \parbox{1cm}{\dotfill}} \\[0.5cm]
|
||||
4x + 7 + \parbox{1.5cm}{\dotfill}= \parbox{1.5cm}{\dotfill}&& \\[0.5cm]
|
||||
4x = \parbox{1cm}{\dotfill}& \hspace{0.5cm} & \mbox{On multiplie par l'inverse de \parbox{1cm}{\dotfill}} \\[0.5cm]
|
||||
\parbox{1.5cm}{\dotfill} \times 4x = \parbox{1.5cm}{\dotfill} \times \parbox{1cm}{\dotfill} && \\[0.5cm]
|
||||
x = \frac{\parbox{1cm}{\dotfill}}{\parbox{1cm}{\dotfill}} \approx \parbox{1cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
La solution est \parbox{2cm}{\dotfill}.
|
||||
|
||||
\item Résoudre les équations suivantes
|
||||
\begin{multicols}{2}
|
||||
\begin{enumerate}
|
||||
\item $2x + 1 = 0$
|
||||
\item $6x + 12 = 0$
|
||||
\item $3x - 3 = 0$
|
||||
\item $8x - 4 = 0$
|
||||
\columnbreak
|
||||
\item $-6x - 3 = 0$
|
||||
\item $9 + 3x = 0$
|
||||
\item $5 + 3x = 0$
|
||||
\item $\frac{2}{3}x + 3 = 0$
|
||||
\end{enumerate}
|
||||
\end{multicols}
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
|
||||
\eject
|
||||
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/Nombres_Calculs/Fractions/Conn01_20/Conn01_20.pdf
Normal file
76
4e/Nombres_Calculs/Fractions/Conn01_20/Conn01_20.tex
Normal file
@@ -0,0 +1,76 @@
|
||||
\documentclass{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classConn}
|
||||
|
||||
|
||||
% Title Page
|
||||
\title{}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{multicols}{2}
|
||||
|
||||
Nom - Prénom:
|
||||
\section{Connaissance}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Soient $a, b, c$ trois entiers relatifs tels que .. .. .. .. .. \\
|
||||
Alors
|
||||
\begin{eqnarray*}
|
||||
a \times \frac{b}{c} & = & .. .. .. .. ..
|
||||
\end{eqnarray*}
|
||||
|
||||
\item Soient $a, b, c, d$ trois entiers relatifs tels que .. .. .. .. .. \\
|
||||
Alors
|
||||
\begin{eqnarray*}
|
||||
\frac{a}{b} \times \frac{c}{d} & = & .. .. .. .. ..
|
||||
\end{eqnarray*}
|
||||
|
||||
\item Faire ces calculs en donnant une réponse en \textbf{écriture fractionnaire}. Simplifier quand c'est possible.
|
||||
\begin{eqnarray*}
|
||||
A & = & \frac{2}{3} + \frac{4}{2}
|
||||
\end{eqnarray*}
|
||||
~\\[2cm]
|
||||
\begin{eqnarray*}
|
||||
B & = & \frac{3}{4} \times \frac{4}{2}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\columnbreak
|
||||
Nom - Prénom
|
||||
\section{Connaissance}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Soient $a, b, c$ trois entiers relatifs tels que .. .. .. .. .. \\
|
||||
Alors
|
||||
\begin{eqnarray*}
|
||||
a \times \frac{b}{c} & = & .. .. .. .. ..
|
||||
\end{eqnarray*}
|
||||
|
||||
\item Soient $a, b, c, d$ trois entiers relatifs tels que .. .. .. .. .. \\
|
||||
Alors
|
||||
\begin{eqnarray*}
|
||||
\frac{a}{b} : \frac{c}{d} & = & .. .. .. .. ..
|
||||
\end{eqnarray*}
|
||||
|
||||
\item Faire ces calculs en donnant une réponse en \textbf{écriture fractionnaire}. Simplifier quand c'est possible.
|
||||
\begin{eqnarray*}
|
||||
A & = & \frac{5}{2} + \frac{4}{3}
|
||||
\end{eqnarray*}
|
||||
~\\[2cm]
|
||||
\begin{eqnarray*}
|
||||
B & = & \frac{5}{3} \times \frac{4}{2}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{enumerate}
|
||||
|
||||
\end{multicols}
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
BIN
4e/Nombres_Calculs/Fractions/Conn01_27/Conn01_27.pdf
Normal file
80
4e/Nombres_Calculs/Fractions/Conn01_27/Conn01_27.tex
Normal file
@@ -0,0 +1,80 @@
|
||||
\documentclass{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classConn}
|
||||
|
||||
|
||||
% Title Page
|
||||
\title{}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{multicols}{2}
|
||||
|
||||
Nom - Prénom:
|
||||
\section{Connaissance}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Soient $a, b, c$ trois entiers relatifs tels que .. .. .. .. .. \\
|
||||
Alors
|
||||
\begin{eqnarray*}
|
||||
a \times \frac{b}{c} & = & .. .. .. .. ..
|
||||
\end{eqnarray*}
|
||||
|
||||
\item Soient $a, b, c, d$ trois entiers relatifs tels que .. .. .. .. .. \\
|
||||
Alors
|
||||
\begin{eqnarray*}
|
||||
\frac{a}{b} \times \frac{c}{d} & = & .. .. .. .. ..
|
||||
\end{eqnarray*}
|
||||
|
||||
\item Diviser par un nombre revient à \dotfill \\
|
||||
~\\[0.5cm]
|
||||
.\dotfill
|
||||
~\\[0.5cm]
|
||||
|
||||
\item L'inverse d'un nombre $b$ est \dotfill \\
|
||||
~\\[0.5cm]
|
||||
.\dotfill
|
||||
~\\[0.5cm]
|
||||
|
||||
\item Est-ce que $0,5$ et $\frac{-1}{2}$ sont opposés? Justifier
|
||||
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\columnbreak
|
||||
Nom - Prénom
|
||||
\section{Connaissance}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Soient $a, b, c$ trois entiers relatifs tels que .. .. .. .. .. \\
|
||||
Alors
|
||||
\begin{eqnarray*}
|
||||
a \times \frac{b}{c} & = & .. .. .. .. ..
|
||||
\end{eqnarray*}
|
||||
|
||||
\item Soient $a, b, c, d$ trois entiers relatifs tels que .. .. .. .. .. \\
|
||||
Alors
|
||||
\begin{eqnarray*}
|
||||
\frac{a}{b} : \frac{c}{d} & = & .. .. .. .. ..
|
||||
\end{eqnarray*}
|
||||
|
||||
\item L'opposé d'un nombre $b$ est \dotfill \\
|
||||
~\\[0.5cm]
|
||||
.\dotfill
|
||||
~\\[0.5cm]
|
||||
|
||||
\item L'inverse de $\frac{a}{b}$ est \dotfill
|
||||
~\\[1cm]
|
||||
|
||||
\item Est-ce que $\frac{3}{4}$ et $\frac{2}{1,5}$ sont inverses? Justifier
|
||||
|
||||
\end{enumerate}
|
||||
|
||||
\end{multicols}
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
BIN
4e/Nombres_Calculs/Fractions/Conn11_12/Conn11_12.pdf
Normal file
59
4e/Nombres_Calculs/Fractions/Conn11_12/Conn11_12.tex
Normal file
@@ -0,0 +1,59 @@
|
||||
\documentclass{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classConn}
|
||||
|
||||
|
||||
% Title Page
|
||||
\title{}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{multicols}{2}
|
||||
|
||||
Nom - Prénom:
|
||||
\section{Connaissance}
|
||||
|
||||
\begin{enumerate}
|
||||
\item $a$, $b$ et $k$ désignent des nombres relatifs avec $b \neq 0$ et $b \neq 0$, alors on a
|
||||
\begin{equation*}
|
||||
\frac{a}{b} = \frac{\qquad \qquad}{\qquad} = \frac{\qquad \qquad}{\qquad}
|
||||
\end{equation*}
|
||||
\vspace{1cm}
|
||||
\item $a$, $b$, $c$ et $d$ désignent des nombres relatifs avec $b \neq 0$ et $d \neq 0$.
|
||||
\begin{center}
|
||||
Si $\frac{a}{b} = \frac{c}{d}$ alors \dotfill
|
||||
\end{center}
|
||||
\vspace{1cm}
|
||||
\item Le quotient de deux nombres de même signe est \\ .\dotfill
|
||||
\vspace{1cm}
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\columnbreak
|
||||
Nom - Prénom
|
||||
\section{Connaissance}
|
||||
|
||||
\begin{enumerate}
|
||||
\item $a$, $b$ et $k$ désignent des nombres relatifs avec $b \neq 0$ et $b \neq 0$, alors on a
|
||||
\begin{equation*}
|
||||
\frac{a}{b} = \frac{\qquad \qquad}{\qquad} = \frac{\qquad \qquad}{\qquad}
|
||||
\end{equation*}
|
||||
\vspace{1cm}
|
||||
\item $a$, $b$, $c$ et $d$ désignent des nombres relatifs avec $b \neq 0$ et $d \neq 0$.
|
||||
\begin{center}
|
||||
Si $a\times d = c \times b$ alors \dotfill
|
||||
\end{center}
|
||||
\vspace{1cm}
|
||||
\item Le quotient de deux nombres de signes différents est \\ .\dotfill
|
||||
\vspace{1cm}
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\end{multicols}
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
BIN
4e/Nombres_Calculs/Fractions/Conn11_12/Conn11_18.pdf
Normal file
81
4e/Nombres_Calculs/Fractions/Conn11_12/Conn11_18.tex
Normal file
@@ -0,0 +1,81 @@
|
||||
\documentclass{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classConn}
|
||||
|
||||
|
||||
% Title Page
|
||||
\title{}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\large
|
||||
|
||||
\begin{multicols}{2}
|
||||
|
||||
Nom - Prénom:
|
||||
\section{Connaissance}
|
||||
|
||||
\begin{enumerate}
|
||||
\item $a$, $b$ et $k$ désignent des nombres relatifs avec $b \neq 0$ et $b \neq 0$, alors on a
|
||||
|
||||
\begin{equation*}
|
||||
\frac{a}{b} = \frac{\qquad \qquad}{\qquad}
|
||||
\end{equation*}
|
||||
\vspace{1cm}
|
||||
\item $a$, $b$, $c$ et $d$ désignent des nombres relatifs avec $b \neq 0$ et $d \neq 0$.
|
||||
\vspace{0.5cm}
|
||||
\begin{center}
|
||||
Si $\frac{a}{b} = \frac{c}{d}$ alors \dotfill
|
||||
\end{center}
|
||||
\vspace{1cm}
|
||||
\item Le quotient de deux nombres de même signe est
|
||||
|
||||
\vspace{0.5cm}
|
||||
.\dotfill
|
||||
\vspace{1cm}
|
||||
|
||||
\item Pour \textbf{comparer} des fractions, il faut
|
||||
|
||||
\vspace{0.5cm}
|
||||
.\dotfill
|
||||
\vspace{1cm}
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\columnbreak
|
||||
Nom - Prénom
|
||||
\section{Connaissance}
|
||||
|
||||
\begin{enumerate}
|
||||
\item $a$, $b$ et $k$ désignent des nombres relatifs avec $b \neq 0$ et $b \neq 0$, alors on a
|
||||
\begin{equation*}
|
||||
\frac{a}{b} = \frac{\qquad \qquad}{\qquad}
|
||||
\end{equation*}
|
||||
\vspace{1cm}
|
||||
\item $a$, $b$, $c$ et $d$ désignent des nombres relatifs avec $b \neq 0$ et $d \neq 0$.
|
||||
\vspace{0.5cm}
|
||||
\begin{center}
|
||||
Si $a\times d = c \times b$ alors \dotfill
|
||||
\end{center}
|
||||
\vspace{1cm}
|
||||
\item Le quotient de deux nombres de signes différents est
|
||||
|
||||
\vspace{0.5cm}
|
||||
.\dotfill
|
||||
\vspace{1cm}
|
||||
|
||||
\item Pour \textbf{additionner} des fractions, il faut
|
||||
|
||||
\vspace{0.5cm}
|
||||
.\dotfill
|
||||
\vspace{1cm}
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\end{multicols}
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
15
4e/Nombres_Calculs/Fractions/problemes/index.rst
Normal file
@@ -0,0 +1,15 @@
|
||||
Notes sur des exercices autour des fractions
|
||||
############################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Nombres Calculs, Exo
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers problemes.pdf <problemes.pdf>`_
|
||||
|
||||
`Lien vers problemes.tex <problemes.tex>`_
|
||||
BIN
4e/Nombres_Calculs/Fractions/problemes/problemes.pdf
Normal file
90
4e/Nombres_Calculs/Fractions/problemes/problemes.tex
Normal file
@@ -0,0 +1,90 @@
|
||||
\documentclass[a4paper,12pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classCours}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{Problèmes sur les fractions}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{\quatreC}
|
||||
\date{12 janvier 2014}
|
||||
|
||||
%\fancyhead[L]{<++classes++> : \Thetitle}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\thispagestyle{empty}
|
||||
|
||||
\begin{Exo}
|
||||
Dans une forêt, il y a $\frac{2}{3}$ des arbres qui sont feuillu (avec des feuilles). Parmi ces arbres, il y en a $\frac{1}{2}$ qui sont de chênes.
|
||||
|
||||
Quelle est la proportion de chênes dans cette forêt?
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Marine utilise $\frac{4}{5}$ d'un paquet de farine pour faire un gâteau. La moitié de ce qui reste lui sert à faire des crêpes.
|
||||
|
||||
Quelle est la proportion du paquet de farine utilisée pour la confection des crêpes?
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Sur un parking à vélos, $\frac{4}{11}$ des vélos sont rouges, $\frac{3}{22}$ sont noirs et $\frac{5}{11}$ des vélos restant sont blancs.
|
||||
|
||||
\begin{enumerate}
|
||||
\item Quelle est la fraction des vélos rouge ou noirs?
|
||||
\item Quelle est la fraction des vélos blancs?
|
||||
\item Quelle est la fraction des vélos qui ne sont ni rouges, ni noirs, ni blancs?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Dans un club sportif, $\frac{1}{2}$ des adhérents ont moins de 30 ans et les $\frac{3}{20}$ des autres ont plus de 40ans.
|
||||
|
||||
\begin{enumerate}
|
||||
\item Quelle est la fraction des adhérents qui ont plus de 40 ans?
|
||||
\item Quelle est la fraction des adhérents qui ont entre 30 et 40 ans?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
~\\[0.5cm]
|
||||
\hline
|
||||
~\\[0.5cm]
|
||||
|
||||
\setcounter{exo}{0}
|
||||
|
||||
\begin{Exo}
|
||||
Dans une forêt, il y a $\frac{2}{3}$ des arbres qui sont feuillu (avec des feuilles). Parmi ces arbres, il y en a $\frac{1}{2}$ qui sont de chênes.
|
||||
|
||||
Quelle est la proportion de chênes dans cette forêt?
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Marine utilise $\frac{4}{5}$ d'un paquet de farine pour faire un gâteau. La moitié de ce qui reste lui sert à faire des crêpes.
|
||||
|
||||
Quelle est la proportion du paquet de farine utilisée pour la confection des crêpes?
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Sur un parking à vélos, $\frac{4}{11}$ des vélos sont rouges, $\frac{3}{22}$ sont noirs et $\frac{5}{11}$ des vélos restant sont blancs.
|
||||
|
||||
\begin{enumerate}
|
||||
\item Quelle est la fraction des vélos rouge ou noirs?
|
||||
\item Quelle est la fraction des vélos blancs?
|
||||
\item Quelle est la fraction des vélos qui ne sont ni rouges, ni noirs, ni blancs?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Dans un club sportif, $\frac{1}{2}$ des adhérents ont moins de 30 ans et les $\frac{3}{20}$ des autres ont plus de 40ans.
|
||||
|
||||
\begin{enumerate}
|
||||
\item Quelle est la fraction des adhérents qui ont plus de 40 ans?
|
||||
\item Quelle est la fraction des adhérents qui ont entre 30 et 40 ans?
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
17
4e/Nombres_Calculs/Puissance/Decouverte/index.rst
Normal file
@@ -0,0 +1,17 @@
|
||||
Notes sur une activité de découverte des puissances
|
||||
###################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Nombres Calculs, Exo
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers redecouverte_puiss.tex <redecouverte_puiss.tex>`_
|
||||
|
||||
`Lien vers redecouverte_puiss.pdf <redecouverte_puiss.pdf>`_
|
||||
|
||||
`Lien vers puissance10.pdf <puissance10.pdf>`_
|
||||
BIN
4e/Nombres_Calculs/Puissance/Decouverte/puissance10.pdf
Normal file
1027
4e/Nombres_Calculs/Puissance/Decouverte/puissance10.svg
Normal file
|
After Width: | Height: | Size: 67 KiB |
BIN
4e/Nombres_Calculs/Puissance/Decouverte/redecouverte_puiss.pdf
Normal file
123
4e/Nombres_Calculs/Puissance/Decouverte/redecouverte_puiss.tex
Normal file
@@ -0,0 +1,123 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
\usepackage{multicol}
|
||||
|
||||
% Title Page
|
||||
\title{Puissances - Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{fancy}
|
||||
|
||||
\begin{Exo}
|
||||
Un laboratoire fait des recherches sur le développement d'une population de cellules. Ils observent que le nombre de cellules est multiplié par 3 toutes les heures. En vous aidant du tableau déterminer le nombre de cellules qu'il y aura au bout de 24h s'il y a une seule cellule au début.
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{|c|*{13}{c|}}
|
||||
\hline
|
||||
Heure & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
|
||||
\hline
|
||||
Cellules & & & & & & & & & & & & &\\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\begin{tabular}{|c|*{12}{c|}}
|
||||
\hline
|
||||
Heure & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\
|
||||
\hline
|
||||
Cellules & & & & & & & & & & & &\\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
On rappelle que l'on peut réduire des écritures en utilisant les puissances. Par exemple,
|
||||
\begin{eqnarray*}
|
||||
2^4 & = & 2 \times 2 \times 2 \times 2
|
||||
\end{eqnarray*}
|
||||
En utilisant cette écriture, réécrire le nombre de cellules au bout de 24h puis de 48h.
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
\begin{multicols}{2}
|
||||
\begin{enumerate}
|
||||
\item Réécrire avec des multiplications les puissances suivantes
|
||||
\begin{eqnarray*}
|
||||
2^5 & = \parbox{1cm}{\dotfill} \\
|
||||
6^7 & = \parbox{1cm}{\dotfill} \\
|
||||
3,1^5 & = \parbox{1cm}{\dotfill} \\
|
||||
2^{10} & = \parbox{1cm}{\dotfill} \\
|
||||
5^1 & = \parbox{1cm}{\dotfill} \\
|
||||
2^0 & = \parbox{1cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
\columnbreak
|
||||
|
||||
\item Réécrire avec des puissances
|
||||
\begin{eqnarray*}
|
||||
4 \times 4 \times 4 & = 4^{\parbox{0.5cm}{\dotfill}} \\
|
||||
3 \times 3 \times 3 \times 3 \times 3 & = 3^{\parbox{0.5cm}{\dotfill}} \\
|
||||
7 \times 7 & = 7^{\parbox{0.5cm}{\dotfill}} \\
|
||||
10\times 10 \times 10 \times 10 \times 10 & = \parbox{1cm}{\dotfill} \\
|
||||
5 & = \parbox{1cm}{\dotfill} \\
|
||||
5 \times 5 \times 5 \times 1& = \parbox{1cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
\end{enumerate}
|
||||
\end{multicols}
|
||||
\end{Exo}
|
||||
\eject
|
||||
|
||||
\begin{Exo}
|
||||
Compléter le tableau sans utiliser la calculatrice.
|
||||
|
||||
\hspace{-0.8cm}
|
||||
\begin{tabular}{|c|c|c|c|}
|
||||
\hline
|
||||
Expression & Avec les puissances & Avec des produits & Valeur décimale \\
|
||||
\hline
|
||||
6 puissance 2 & $6^2$ & $6 \times 6$ & 36 \\
|
||||
\hline
|
||||
3 puissance 4 & & & \\
|
||||
\hline
|
||||
2 puissance 5 & & & \\
|
||||
\hline
|
||||
& $(-2)^3$ & & \\
|
||||
\hline
|
||||
& & $(-4) \times (-4) \times (-4)$ & \\
|
||||
\hline
|
||||
& & & 1000\\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
\begin{enumerate}
|
||||
\item
|
||||
En passant par l'écriture avec les $\times$, mettre les multiplications suivantes sous la forme $a^n$
|
||||
\begin{eqnarray*}
|
||||
2^3\times2^4 =& 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 &= 2^7\\
|
||||
3^4 \times 3^5 =& \parbox{5cm}{\dotfill} & = 3^{\parbox{1cm}{\dotfill}} \\
|
||||
6^2 \times 6^3 =& \parbox{5cm}{\dotfill} & = 6^{\parbox{1cm}{\dotfill}} \\
|
||||
9 \times 9^6 =& \parbox{5cm}{\dotfill} & = 9^{\parbox{1cm}{\dotfill}} \\
|
||||
5^4 \times 5^3 =& \parbox{5cm}{\dotfill} & = 5^{\parbox{1cm}{\dotfill}} \\
|
||||
2^7 \times 2^0 =& \parbox{5cm}{\dotfill} & = 2^{\parbox{1cm}{\dotfill}} \\
|
||||
\end{eqnarray*}
|
||||
\item
|
||||
Donner une idée pour compléter la formule suivante
|
||||
\begin{eqnarray*}
|
||||
a^n \times a^m & = & a^{\parbox{1cm}{\dotfill}}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
15
4e/Nombres_Calculs/Puissance/fiches_exo/index.rst
Normal file
@@ -0,0 +1,15 @@
|
||||
Notes sur une fiche d'exercices autour des puissances
|
||||
#####################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Nombres Calculs, Exo
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers puissances_1.pdf <puissances_1.pdf>`_
|
||||
|
||||
`Lien vers puissances_1.tex <puissances_1.tex>`_
|
||||
BIN
4e/Nombres_Calculs/Puissance/fiches_exo/puissances_1.pdf
Normal file
125
4e/Nombres_Calculs/Puissance/fiches_exo/puissances_1.tex
Normal file
@@ -0,0 +1,125 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
\usepackage{multicol}
|
||||
|
||||
% Title Page
|
||||
\title{Puissances - Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{fancy}
|
||||
|
||||
\begin{Exo}
|
||||
\begin{enumerate}
|
||||
\item
|
||||
En passant par l'écriture avec les $\times$, mettre les multiplications suivantes sous la forme $a^n$
|
||||
\begin{eqnarray*}
|
||||
2^3\times2^4 =& 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 &= 2^7\\
|
||||
3^4 \times 3^5 =& \parbox{5cm}{\dotfill} & = 3^{\parbox{1cm}{\dotfill}} \\
|
||||
6^2 \times 6^3 =& \parbox{5cm}{\dotfill} & = 6^{\parbox{1cm}{\dotfill}} \\
|
||||
9 \times 9^6 =& \parbox{5cm}{\dotfill} & = 9^{\parbox{1cm}{\dotfill}} \\
|
||||
5^4 \times 5^3 =& \parbox{5cm}{\dotfill} & = 5^{\parbox{1cm}{\dotfill}} \\
|
||||
2^7 \times 2^0 =& \parbox{5cm}{\dotfill} & = 2^{\parbox{1cm}{\dotfill}} \\
|
||||
\end{eqnarray*}
|
||||
\item
|
||||
Donner une idée pour compléter la formule suivante
|
||||
\begin{eqnarray*}
|
||||
a^n \times a^m & = & a^{\parbox{1cm}{\dotfill}}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Compléter les tableau suivants
|
||||
|
||||
\vspace{1cm}
|
||||
\hspace{-0.5cm}
|
||||
\begin{tabular}{|c|*{7}{p{1.2cm}|}}
|
||||
\hline
|
||||
Puissances & $10^{-3}$ & $10^{-2}$ &$10^{-1}$ &$10^{0}$ &$10^{1}$ &$10^{2}$ &$10^{3}$ \\
|
||||
\hline
|
||||
Expression & & & & & & & \\
|
||||
\hline
|
||||
Décimale & & & & & & & \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\vspace{1cm}
|
||||
\hspace{-0.5cm}
|
||||
\begin{tabular}{|c|*{7}{p{1.2cm}|}}
|
||||
\hline
|
||||
Puissances & $2^{-3}$ & $2^{-2}$ &$2^{-1}$ &$2^{0}$ &$2^{1}$ &$2^{2}$ &$2^{3}$ \\
|
||||
\hline
|
||||
Expression & & & & & & & \\
|
||||
\hline
|
||||
Décimale & & & & & & & \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\end{Exo}
|
||||
\eject
|
||||
|
||||
\begin{Exo}
|
||||
\begin{enumerate}
|
||||
\item Réécrire avec des multiplications puis mettre sous la forme $a^n$
|
||||
|
||||
\vspace{-0.5cm}
|
||||
\begin{eqnarray*}
|
||||
\frac{2^5}{2^3} = \frac{\parbox{3cm}{\dotfill}}{\parbox{3cm}{\dotfill}} = 2^{\parbox{1cm}{\dotfill}} \\[0.5cm]
|
||||
\frac{10^4}{10^2} = \frac{\parbox{3cm}{\dotfill}}{\parbox{3cm}{\dotfill}} = 10^{\parbox{1cm}{\dotfill}} \\[0.5cm]
|
||||
\frac{3^4}{3^5} = \frac{\parbox{3cm}{\dotfill}}{\parbox{3cm}{\dotfill}} = 3^{\parbox{1cm}{\dotfill}}
|
||||
\end{eqnarray*}
|
||||
\begin{eqnarray*}
|
||||
\frac{2^4}{2^5} = \frac{\parbox{3cm}{\dotfill}}{\parbox{3cm}{\dotfill}} = 2^{\parbox{1cm}{\dotfill}} \\[0.5cm]
|
||||
\end{eqnarray*}
|
||||
\vspace{-1.5cm}
|
||||
\item Donner une idée pour compléter la formule suivante
|
||||
\begin{eqnarray*}
|
||||
\frac{a^n}{a^m} & = & a^{\parbox{1cm}{\dotfill}}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Mettre les expressions suivantes sous la forme $a^n$ en passant la l'écriture avec les multiplications.
|
||||
|
||||
\begin{multicols}{3}
|
||||
\begin{eqnarray*}
|
||||
\frac{3^5}{3^5} \\[0.5cm]
|
||||
\frac{5^2 \times 5^3}{5^2} \\[0.5cm]
|
||||
\frac{7^3}{ 7^2 \times 7} \\[0.5cm]
|
||||
\end{eqnarray*}
|
||||
\columnbreak
|
||||
\begin{eqnarray*}
|
||||
\frac{2^5 \times 2^7}{2^5} \\[0.5cm]
|
||||
\frac{2^7 \times 2^2}{2^9} \\[0.5cm]
|
||||
\frac{2^5 \times 2^{-2}}{ 2^4 \times 2^5} \\[0.5cm]
|
||||
\end{eqnarray*}
|
||||
\columnbreak
|
||||
\begin{eqnarray*}
|
||||
\frac{10^4 \times 10^8}{10^2} \\[0.5cm]
|
||||
\frac{10^{-8} \times 10^7}{10^{15}} \\[0.5cm]
|
||||
\frac{10^6}{ 10^3 \times 10^5} \\[0.5cm]
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{multicols}
|
||||
|
||||
\end{Exo}
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
19
4e/Nombres_Calculs/Puissance/scientifique/index.rst
Normal file
@@ -0,0 +1,19 @@
|
||||
Notes sur une fiche d'exercices autour de la notation scientifique
|
||||
##################################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Nombres Calculs, Exo
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers scientifique_corr.pdf <scientifique_corr.pdf>`_
|
||||
|
||||
`Lien vers scientifique.tex <scientifique.tex>`_
|
||||
|
||||
`Lien vers scientifique_corr.tex <scientifique_corr.tex>`_
|
||||
|
||||
`Lien vers scientifique.pdf <scientifique.pdf>`_
|
||||
BIN
4e/Nombres_Calculs/Puissance/scientifique/scientifique.pdf
Normal file
94
4e/Nombres_Calculs/Puissance/scientifique/scientifique.tex
Normal file
@@ -0,0 +1,94 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
\usepackage{multicol}
|
||||
%\usepackage{enumitem}
|
||||
|
||||
% Title Page
|
||||
\title{Puissances - Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Troisième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{fancy}
|
||||
|
||||
|
||||
\begin{Exo}
|
||||
Passer les écritures suivantes en écriture décimale (sans multiplications)
|
||||
\begin{enumerate}
|
||||
\begin{multicols}
|
||||
\item $123,4567 \times 10^3$
|
||||
\item $3,56 \times 10^4$
|
||||
\item $58,345 \times 10^2$
|
||||
\item $0,0472 \times 10^6$
|
||||
\columnbreak
|
||||
\item $3,56 \times 10^{-4}$
|
||||
\item $234,45 \times 10^{-1}$
|
||||
\item $2345 \times 10^{-6}$
|
||||
\item $4,56 \times 10^{-3}$
|
||||
\end{multicols}
|
||||
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Relie chaque nombre à gauche à son écriture scientifique à droite.
|
||||
\begin{tabular}{rp{2cm}l}
|
||||
23,456 $\bullet$ && $\bullet$$2,3456 \times 10^{0}$ \\
|
||||
234,56 $\bullet$ && $\bullet$$2,3456 \times 10^{2}$\\
|
||||
2,3456 $\bullet$ && $\bullet$$2,3456 \times 10^{1}$\\
|
||||
0,0023456 $\bullet$ && $\bullet$$2,3456 \times 10^{-3}$
|
||||
\end{tabular}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Voici les caractéristiques de plusieurs planètes du système solaire.
|
||||
\begin{tabular}{|c|c|c|}
|
||||
\hline
|
||||
Planète & Rayon moyen (km) & Masse(kg) \\
|
||||
\hline
|
||||
Mercure & 2439,7 & $3,302\times 10^{23}$ \\
|
||||
\hline
|
||||
Terre & 6 371 & $5,9736 \times 10^{24}$ \\
|
||||
\hline
|
||||
Mars & 3390 & $6,4185 \times 10^{23}$ \\
|
||||
\hline
|
||||
Jupiter & 69 911 & $1,8986 \times 10^{27}$ \\
|
||||
\hline
|
||||
Neptune & 24 622 & $1,0243 \times 10^{26}$ \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\begin{enumerate}
|
||||
\item Classer ces planètes de la plus petite à la plus grosse.
|
||||
\item Classer ces planète en fonction de leur masse.
|
||||
\item Classe les planètes selon leur masse volumique. La formule pour calculer la masse volumique est ($m$ représente la masse et $r$ le rayon).
|
||||
\begin{eqnarray*}
|
||||
\frac{3m}{4\pi\times r^3}
|
||||
\end{eqnarray*}
|
||||
\item Peut-on à partir du calcul de la masse volumique faire deux groupes de planètes, les planètes gazeuses et les planètes tellurique?
|
||||
|
||||
\end{enumerate}
|
||||
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Écrire les nombres suivants sous forme scientifique.
|
||||
\begin{enumerate}
|
||||
\item $12345$
|
||||
\item $456,34$
|
||||
\item $987,003$
|
||||
\item $0.0043$
|
||||
\end{enumerate}
|
||||
|
||||
\end{Exo}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/Nombres_Calculs/Puissance/scientifique/scientifique_corr.pdf
Normal file
@@ -0,0 +1,40 @@
|
||||
\documentclass[a4paper,10pt]{beamer}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[french]{babel}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{thumbpdf}
|
||||
\usepackage{wasysym}
|
||||
\usepackage{ucs}
|
||||
\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps,pgfshade}
|
||||
\usepackage{verbatim}
|
||||
\usepackage{subfig}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{tikz}
|
||||
\usepackage{enumerate}
|
||||
\usepackage{eurosym}
|
||||
|
||||
|
||||
\renewcommand{\arraystretch}{2}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Masse volumique des planètes}
|
||||
|
||||
\begin{tabular}{|c|c|c|c|}
|
||||
\hline
|
||||
Planète & Rayon moyen (km) & Masse(kg) & Masse volumique ($kg/m^3$)\\
|
||||
\hline
|
||||
Mercure & 2439,7 & $3,302\times 10^{23}$ & $ 5,428\times 10^{12}$\\
|
||||
\hline
|
||||
Terre & 6 371 & $5,9736 \times 10^{24}$ & $ 5,514\times 10^{12}$\\
|
||||
\hline
|
||||
Mars & 3390 & $6,4185 \times 10^{23}$ & $ 3,933\times 10^{12}$\\
|
||||
\hline
|
||||
Jupiter & 69 911 & $1,8986 \times 10^{27}$ & $ 1,326\times 10^{12}$\\
|
||||
\hline
|
||||
Neptune & 24 622 & $1,0243 \times 10^{26}$ & $ 1,638\times 10^{12}$\\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
||||
BIN
4e/Nombres_Calculs/nbr_relatif/Conn/Conn0916.pdf
Normal file
78
4e/Nombres_Calculs/nbr_relatif/Conn/Conn0916.tex
Normal file
@@ -0,0 +1,78 @@
|
||||
\documentclass{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classConn}
|
||||
|
||||
|
||||
% Title Page
|
||||
\title{}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{multicols}{2}
|
||||
|
||||
Nom - Prénom:
|
||||
\section{Connaissance}
|
||||
|
||||
Completer les phrases suivantes
|
||||
|
||||
\begin{itemize}
|
||||
\renewcommand{\labelitemi}{$\star$}
|
||||
\item Les nombres relatifs sont \dotfill
|
||||
\vspace{2cm}
|
||||
\item Si on multiplie deux nombres relatifs de même signe \\ alors \dotfill \\
|
||||
\end{itemize}
|
||||
|
||||
\vspace{3cm}
|
||||
|
||||
|
||||
Nom - Prénom:
|
||||
\section{Connaissance}
|
||||
|
||||
Completer les phrases suivantes
|
||||
|
||||
\begin{itemize}
|
||||
\renewcommand{\labelitemi}{$\star$}
|
||||
\item Les nombres relatifs sont \dotfill
|
||||
\vspace{2cm}
|
||||
\item Si on multiplie deux nombres négatifs ensembles \\ alors le résultat est \dotfill \\
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\columnbreak
|
||||
|
||||
Nom - Prénom:
|
||||
\section{Connaissance}
|
||||
|
||||
Completer les phrases suivantes
|
||||
|
||||
\begin{itemize}
|
||||
\renewcommand{\labelitemi}{$\star$}
|
||||
\item Les nombres relatifs sont \dotfill
|
||||
\vspace{2cm}
|
||||
\item Si on multiplie un nombre négatif avec un nombre positif \\ alors \dotfill \\
|
||||
\end{itemize}
|
||||
|
||||
\vspace{3cm}
|
||||
|
||||
|
||||
Nom - Prénom:
|
||||
\section{Connaissance}
|
||||
|
||||
Completer les phrases suivantes
|
||||
|
||||
\begin{itemize}
|
||||
\renewcommand{\labelitemi}{$\star$}
|
||||
\item Les nombres relatifs sont \dotfill
|
||||
\vspace{2cm}
|
||||
\item Si on multiplie un nombre positif avec un nombre négatif \\ alors \dotfill \\
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\end{multicols}
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
BIN
4e/Nombres_Calculs/nbr_relatif/Conn/Conn0916_bis.pdf
Normal file
78
4e/Nombres_Calculs/nbr_relatif/Conn/Conn0916_bis.tex
Normal file
@@ -0,0 +1,78 @@
|
||||
\documentclass{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classConn}
|
||||
|
||||
|
||||
% Title Page
|
||||
\title{}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{multicols}{2}
|
||||
|
||||
Nom - Prénom - Classe:
|
||||
\section{Connaissance}
|
||||
|
||||
Compléter les phrases suivantes
|
||||
|
||||
\begin{itemize}
|
||||
\renewcommand{\labelitemi}{$\star$}
|
||||
\item Les nombres relatifs sont \dotfill\\
|
||||
\item Si on multiplie deux nombres relatifs de même signe \\ alors \dotfill \\
|
||||
\item Lors d'une multiplication, si le nombre de chiffres négatifs est impaire alors \dotfill
|
||||
\end{itemize}
|
||||
|
||||
\vspace{2cm}
|
||||
|
||||
|
||||
Nom - Prénom - Classe:
|
||||
\section{Connaissance}
|
||||
|
||||
Compléter les phrases suivantes
|
||||
|
||||
\begin{itemize}
|
||||
\renewcommand{\labelitemi}{$\star$}
|
||||
\item Les nombres relatifs sont \dotfill \\
|
||||
\item Si on multiplie deux nombres négatifs ensembles \\ alors le résultat est \dotfill \\
|
||||
\item Lors d'une multiplication, si le nombre de chiffres négatifs est paire alors \dotfill
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\columnbreak
|
||||
|
||||
Nom - Prénom - Classe:
|
||||
\section{Connaissance}
|
||||
|
||||
Compléter les phrases suivantes
|
||||
|
||||
\begin{itemize}
|
||||
\renewcommand{\labelitemi}{$\star$}
|
||||
\item Les nombres relatifs sont \dotfill \\
|
||||
\item Si on multiplie un nombre négatif avec un nombre positif \\ alors \dotfill \\
|
||||
\item Lors d'une multiplication, si le nombre de chiffres négatifs est impaire alors \dotfill
|
||||
\end{itemize}
|
||||
|
||||
\vspace{2cm}
|
||||
|
||||
|
||||
Nom - Prénom - Classe:
|
||||
\section{Connaissance}
|
||||
|
||||
Compléter les phrases suivantes
|
||||
|
||||
\begin{itemize}
|
||||
\renewcommand{\labelitemi}{$\star$}
|
||||
\item Les nombres relatifs sont \dotfill \\
|
||||
\item Si on multiplie un nombre positif avec un nombre négatif \\ alors \dotfill \\
|
||||
\item Lors d'une multiplication, si le nombre de chiffres négatifs est paire alors \dotfill
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\end{multicols}
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
15
4e/Nombres_Calculs/nbr_relatif/Cours/index.rst
Normal file
@@ -0,0 +1,15 @@
|
||||
Notes sur le cours autour de nombre relatif
|
||||
###########################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Nombres Calculs,Cours
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers nbr_relatifs.tex <nbr_relatifs.tex>`_
|
||||
|
||||
`Lien vers nbr_relatifs.pdf <nbr_relatifs.pdf>`_
|
||||
BIN
4e/Nombres_Calculs/nbr_relatif/Cours/nbr_relatifs.pdf
Normal file
77
4e/Nombres_Calculs/nbr_relatif/Cours/nbr_relatifs.tex
Normal file
@@ -0,0 +1,77 @@
|
||||
\documentclass[a4paper,10pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classCours}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||||
|
||||
% Title Page
|
||||
\titre{Nombres reltifs}
|
||||
% \quatreC \quatreD \troisB \troisPro
|
||||
\classe{Quatrième}
|
||||
\date{9 septembre 2013}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
\section{Calcul litteral}
|
||||
|
||||
\begin{Def}
|
||||
Une \textbf{expression littérale} est une expression dans laquelle un ou plusieurs chiffres ont été remplacé par des lettres.
|
||||
\end{Def}
|
||||
|
||||
\begin{Ex}
|
||||
\begin{itemize}
|
||||
\item $x + 5$ est une expression littérale. Si on remplace $x$ par 5, on obtient: $5 + 5 = 10$.
|
||||
\item $a(a-3) + 1$ est une expression littérale. Si on remplace $a$ par 2 on obtient $2(2-1) + 1 = 2\times(-1) + 1 = -2 + 2 = -1$. Si on remplace $a$ par $2x$, on obtient...
|
||||
\end{itemize}
|
||||
\end{Ex}
|
||||
|
||||
\paragraph{Rappel:} le carré
|
||||
\begin{eqnarray*}
|
||||
5^2 = 5\times 5 = 25 \\
|
||||
(-3)^2 = (-3) \times (-3) = 9
|
||||
\end{eqnarray*}
|
||||
|
||||
\begin{Ex}
|
||||
\begin{itemize}
|
||||
\item Calculer $(a+b)^2$ et $a^2 + b^2$ avec $a = 2$ et $b = 1$
|
||||
\item Calculer $(a-b)^2$ et $a^2 - b^2$ avec $a = 2$ et $b = 3$
|
||||
\end{itemize}
|
||||
% 9/09/2013
|
||||
% On s'arrete ici avec les 2 classes. Le remplacement des lettres par des chiffres marche plutôt bien même en ce début d'année. Par contre bien entendu, ils ne savent pas calculer -3x(-3) .. vu que c'est le thème du chapitre!
|
||||
% Il faudrait peut être faire plus d'exemple où l'on remplace les lettres par des chiffres pour montrer l'interet du calcul littéral.
|
||||
\paragraph{Que remarque-t-on?} On remarque que $(2 + 1)^2 = ..$ n'est pas égal à $2^2 + 1^2 = ..$.
|
||||
|
||||
\end{Ex}
|
||||
|
||||
\section{Développer et factoriser}
|
||||
\subsection{Développer}
|
||||
\begin{Ex}
|
||||
Développer les expressions suivantes
|
||||
\begin{eqnarray*}
|
||||
3(2x + 1) & = & \\
|
||||
2x(x - 1) & = & \\
|
||||
\end{eqnarray*}
|
||||
\end{Ex}
|
||||
|
||||
\begin{Def}
|
||||
\textbf{Développer} c'est transformer un produit en somme, ou encore enlever des parenthèses.
|
||||
\end{Def}
|
||||
|
||||
\paragraph{Question:} Comment enlever les parenthèses pour $(2x=1)(x+3)$?
|
||||
|
||||
\begin{Prop}
|
||||
$a, b, c, d$ représentent des nombres \note{Bien sûr, on a les flêches pour représenter ça!)}
|
||||
\begin{eqnarray*}
|
||||
(a+b)(c+d) & = & ac + ad + bc + bd
|
||||
\end{eqnarray*}
|
||||
\end{Prop}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||