Import work from year 2013-2014
This commit is contained in:
BIN
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo.pdf
Normal file
BIN
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo.pdf
Normal file
Binary file not shown.
76
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo.tex
Normal file
76
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo.tex
Normal file
@@ -0,0 +1,76 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
|
||||
% Title Page
|
||||
\title{Develloper factoriser - Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{empty}
|
||||
|
||||
\begin{Exo}
|
||||
Compléter les pointillés pour développer les expressions.
|
||||
\begin{enumerate}
|
||||
\item$A = (2x + 3)(4 + 7x)$
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/doubleProd}
|
||||
|
||||
$A = \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots $
|
||||
\end{center}
|
||||
|
||||
\item$B = (5x + 2)(-4 + x)$
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/doubleProd}
|
||||
|
||||
$B = \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots $
|
||||
\end{center}
|
||||
|
||||
\item$C = (2x - 3)(-4 + 7x)$
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/doubleProd}
|
||||
|
||||
$C = \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots $
|
||||
\end{center}
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
|
||||
|
||||
\setcounter{exo}{0}
|
||||
|
||||
\begin{Exo}
|
||||
Compléter les pointillés pour développer les expressions.
|
||||
\begin{enumerate}
|
||||
\item$A = (2x + 3)(4 + 7x)$
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/doubleProd}
|
||||
|
||||
$A = \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots $
|
||||
\end{center}
|
||||
|
||||
\item$B = (5x + 2)(-4 + x)$
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/doubleProd}
|
||||
|
||||
$B = \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots $
|
||||
\end{center}
|
||||
|
||||
\item$C = (2x - 3)(-4 + 7x)$
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/doubleProd}
|
||||
|
||||
$C = \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots $
|
||||
\end{center}
|
||||
\end{enumerate}
|
||||
\end{Exo}
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo_2.pdf
Normal file
BIN
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo_2.pdf
Normal file
Binary file not shown.
78
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo_2.tex
Normal file
78
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo_2.tex
Normal file
@@ -0,0 +1,78 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
|
||||
% Title Page
|
||||
\title{Develloper factoriser - Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{fancy}
|
||||
|
||||
\begin{Exo}
|
||||
Réduire les produits suivants
|
||||
\begin{eqnarray*}
|
||||
2x \times 3 = \cdots &\hspace{2cm}& 4 \times 3b = \cdots \\[0.4cm]
|
||||
3x \times (-3) = \cdots &\hspace{2cm}& 7 \times 2b = \cdots \\[0.4cm]
|
||||
-2x \times (-5) = \cdots &\hspace{2cm}& 4x \times 3x = \cdots \\[0.4cm]
|
||||
-5x \times (-x) = \cdots &\hspace{2cm}& 4x^2 \times 3 = \cdots \\
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Réduire les sommes suivantes
|
||||
\begin{eqnarray*}
|
||||
2x + 3 + 4x & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
2 + 3x - 6 & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
-2x + 3x^2 + 6x & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
2x^2 + 3x - 4x + 4 & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
9x^2 + 4x - 4x + 4 & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
x^2 + 3 - 4x + 4 & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
3\times2^2x + 1\times 3 - 4\times2x + 4 & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
x^2 + 3 - 4x + 4 & = & \hspace{2cm} \cdots \hspace{2cm} = \hspace{2cm}\cdots \hspace{2cm}\\[0.4cm]
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\vspace{3cm}
|
||||
|
||||
|
||||
\begin{Exo}
|
||||
Développer les expressions suivantes (on ne demande pas de réduire)
|
||||
|
||||
\begin{eqnarray*}
|
||||
(2x + 3)(4x + 1) &=& \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots \\[0.4cm]
|
||||
(x + 6)(2x + 3) &=& \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots \\[0.4cm]
|
||||
(3x - 3)(x + 1) &=& \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots \\[0.4cm]
|
||||
(3x - 5)(x - 5) &=& \\[0.4cm]
|
||||
(2x^2 + x)(3 - 3x) &=&
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Développer, réduire et mettre sous la forme $ax^2 + bx + c$.
|
||||
\begin{eqnarray*}
|
||||
(2x + 3)(4x + 1) &=& \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.6cm]
|
||||
(x + 4)(2x - 1) &=& \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm}
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo_3.pdf
Normal file
BIN
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo_3.pdf
Normal file
Binary file not shown.
90
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo_3.tex
Normal file
90
4e/Nombres_Calculs/Cal_litt/Exo/double_prod_exo_3.tex
Normal file
@@ -0,0 +1,90 @@
|
||||
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
||||
|
||||
% Title Page
|
||||
\title{Develloper factoriser - Exercices}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\fancyhead[L]{Quatrième}
|
||||
\fancyhead[C]{\Thetitle}
|
||||
\fancyhead[R]{\thepage}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{empty}
|
||||
|
||||
\begin{Exo}
|
||||
Développer les expressions suivantes (on ne demande pas de réduire)
|
||||
|
||||
\begin{eqnarray*}
|
||||
A = (6x - 2)(6x + 1) \hspace{1cm}
|
||||
B = (2x + 3)^2 \hspace{1cm}
|
||||
C = (2x - 3)^2
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Développer, réduire et mettre sous la forme $ax^2 + bx + c$.
|
||||
\begin{eqnarray*}
|
||||
A = (2 + 7x)(2x - 7x) &=& \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots \\[0.4cm]
|
||||
\mbox{Simplification des } "\times" &=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
\mbox{On range }&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
\mbox{Simplification des } "+"&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
\mbox{Ordre demandé}&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.6cm]
|
||||
\end{eqnarray*}
|
||||
Ici on a alors
|
||||
\begin{eqnarray*}
|
||||
a = \parbox{1cm}{\dotfill} \qquad b = \parbox{1cm}{\dotfill}\qquad c = \parbox{1cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
|
||||
En reprennant les mêmes étapes qu'au dessus, développer, réduire et mettre sous la forme $ax^2 + bx + c$ les expressions suivantes
|
||||
\begin{eqnarray*}
|
||||
B & = & (2x + 5)(4 + 4x) \\
|
||||
C & = & (4x - 1)^2 \\
|
||||
C & = & (-2x - 3)^2 \\
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\vfill\eject
|
||||
\setcounter{exo}{0}
|
||||
|
||||
\begin{Exo}
|
||||
Développer les expressions suivantes (on ne demande pas de réduire)
|
||||
|
||||
\begin{eqnarray*}
|
||||
A = (6x - 2)(6x + 1) \hspace{1cm}
|
||||
B = (2x + 3)^2 \hspace{1cm}
|
||||
C = (2x - 3)^2
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
\begin{Exo}
|
||||
Développer, réduire et mettre sous la forme $ax^2 + bx + c$.
|
||||
\begin{eqnarray*}
|
||||
A = (2 + 7x)(2x - 7x) &=& \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots + \cdots \times \cdots \\[0.4cm]
|
||||
\mbox{Simplification des } "\times" &=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
\mbox{On range }&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
\mbox{Simplification des } "+"&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.4cm]
|
||||
\mbox{Ordre demandé}&=& \hspace{2cm} + \hspace{2cm} + \hspace{2cm} \\[0.6cm]
|
||||
\end{eqnarray*}
|
||||
Ici on a alors
|
||||
\begin{eqnarray*}
|
||||
a = \parbox{1cm}{\dotfill} \qquad b = \parbox{1cm}{\dotfill}\qquad c = \parbox{1cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
|
||||
En reprennant les mêmes étapes qu'au dessus, développer, réduire et mettre sous la forme $ax^2 + bx + c$ les expressions suivantes
|
||||
\begin{eqnarray*}
|
||||
B & = & (2x + 5)(4 + 4x) \\
|
||||
C & = & (4x - 1)^2 \\
|
||||
C & = & (-2x - 3)^2 \\
|
||||
\end{eqnarray*}
|
||||
\end{Exo}
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
68
4e/Nombres_Calculs/Cal_litt/Exo/fig/doubleProd.pdf
Normal file
68
4e/Nombres_Calculs/Cal_litt/Exo/fig/doubleProd.pdf
Normal file
@@ -0,0 +1,68 @@
|
||||
%PDF-1.5
|
||||
%<25><><EFBFBD><EFBFBD>
|
||||
3 0 obj
|
||||
<< /Length 4 0 R
|
||||
/Filter /FlateDecode
|
||||
>>
|
||||
stream
|
||||
x<EFBFBD><EFBFBD><EFBFBD><EFBFBD>JD1F<>}<7D><><EFBFBD><EFBFBD><EFBFBD>k<EFBFBD>'\<5C>.<17>"<22>w1<77><31><EFBFBD>7<EFBFBD><37><EFBFBD><EFBFBD><EFBFBD>RJ<52>G{8iΥ<69>Xwp<77>\<5C><><EFBFBD>(|<17>C<EFBFBD><1F><>+<2B>fxg<><67><EFBFBD><EFBFBD>(<16><>f<EFBFBD><66><EFBFBD>GqREQh<51>H<EFBFBD>@<40><>d<EFBFBD><64><EFBFBD>#<1C>x(;<0E>f<EFBFBD>C<>\#<23><>>W<> <20><> F͝<46>)<29><>M<EFBFBD><4D>=e<14>[b<><14>}&<1B><>@rF<72><46><EFBFBD><02>d<EFBFBD>j<EFBFBD>X<EFBFBD><58><EFBFBD>D<EFBFBD><44><EFBFBD>z<EFBFBD>o<EFBFBD>-<2D>h<EFBFBD><68>zp<>f<EFBFBD>dw<1C><><1E>հ<EFBFBD>X<16>k<><6B><EFBFBD><EFBFBD>?<3F><>%<03>m<EFBFBD><6D>7<37>
|
||||
y,?2v<32>
|
||||
endstream
|
||||
endobj
|
||||
4 0 obj
|
||||
237
|
||||
endobj
|
||||
2 0 obj
|
||||
<<
|
||||
/ExtGState <<
|
||||
/a0 << /CA 1 /ca 1 >>
|
||||
>>
|
||||
>>
|
||||
endobj
|
||||
5 0 obj
|
||||
<< /Type /Page
|
||||
/Parent 1 0 R
|
||||
/MediaBox [ 0 0 841.889771 595.275574 ]
|
||||
/Contents 3 0 R
|
||||
/Group <<
|
||||
/Type /Group
|
||||
/S /Transparency
|
||||
/I true
|
||||
/CS /DeviceRGB
|
||||
>>
|
||||
/Resources 2 0 R
|
||||
>>
|
||||
endobj
|
||||
1 0 obj
|
||||
<< /Type /Pages
|
||||
/Kids [ 5 0 R ]
|
||||
/Count 1
|
||||
>>
|
||||
endobj
|
||||
6 0 obj
|
||||
<< /Creator (cairo 1.12.16 (http://cairographics.org))
|
||||
/Producer (cairo 1.12.16 (http://cairographics.org))
|
||||
>>
|
||||
endobj
|
||||
7 0 obj
|
||||
<< /Type /Catalog
|
||||
/Pages 1 0 R
|
||||
>>
|
||||
endobj
|
||||
xref
|
||||
0 8
|
||||
0000000000 65535 f
|
||||
0000000651 00000 n
|
||||
0000000351 00000 n
|
||||
0000000015 00000 n
|
||||
0000000329 00000 n
|
||||
0000000423 00000 n
|
||||
0000000716 00000 n
|
||||
0000000845 00000 n
|
||||
trailer
|
||||
<< /Size 8
|
||||
/Root 7 0 R
|
||||
/Info 6 0 R
|
||||
>>
|
||||
startxref
|
||||
897
|
||||
145
4e/Nombres_Calculs/Cal_litt/Exo/fig/doubleProd.svg
Normal file
145
4e/Nombres_Calculs/Cal_litt/Exo/fig/doubleProd.svg
Normal file
@@ -0,0 +1,145 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="simpleProd.pdf">
|
||||
<defs
|
||||
id="defs4">
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3837"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3757"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-6"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-0"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-9"
|
||||
is_visible="true" />
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.80366138"
|
||||
inkscape:cx="526.18109"
|
||||
inkscape:cy="372.04724"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(0,-308.2677)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="rect3753"
|
||||
width="790.13379"
|
||||
height="462.88153"
|
||||
x="171.71411"
|
||||
y="180.42424"
|
||||
transform="translate(0,308.2677)" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
d="m 368.31433,181.66855 0,460.39291"
|
||||
id="path3755"
|
||||
inkscape:path-effect="#path-effect3757"
|
||||
inkscape:original-d="m 368.31433,181.66855 0,460.39291"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="translate(0,308.2677)" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="53.505123"
|
||||
y="428.04099"
|
||||
id="text3759"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3761"
|
||||
x="53.505123"
|
||||
y="428.04099" /></text>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0"
|
||||
d="m 47.283596,776.12643 95.811494,0"
|
||||
id="path3763"
|
||||
inkscape:path-effect="#path-effect3765"
|
||||
inkscape:original-d="m 47.283596,776.12643 95.811494,0"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0"
|
||||
d="m 215.88694,457.58431 95.8115,0"
|
||||
id="path3763-1"
|
||||
inkscape:path-effect="#path-effect3765-6"
|
||||
inkscape:original-d="m 215.88694,457.58431 95.8115,0"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0"
|
||||
d="m 636.46208,453.85141 95.8115,0"
|
||||
id="path3763-5"
|
||||
inkscape:path-effect="#path-effect3765-0"
|
||||
inkscape:original-d="m 636.46208,453.85141 95.8115,0"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
d="m 169.2255,308.58768 792.62238,0"
|
||||
id="path3835"
|
||||
inkscape:path-effect="#path-effect3837"
|
||||
inkscape:original-d="m 169.2255,308.58768 792.62238,0"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="translate(0,308.2677)" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0"
|
||||
d="m 40.439919,569.57178 95.811491,0"
|
||||
id="path3763-2"
|
||||
inkscape:path-effect="#path-effect3765-9"
|
||||
inkscape:original-d="m 40.439919,569.57178 95.811491,0"
|
||||
inkscape:connector-curvature="0" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 5.5 KiB |
BIN
4e/Nombres_Calculs/Cal_litt/Exo/fig/doubleProd_num.pdf
Normal file
BIN
4e/Nombres_Calculs/Cal_litt/Exo/fig/doubleProd_num.pdf
Normal file
Binary file not shown.
153
4e/Nombres_Calculs/Cal_litt/Exo/fig/doubleProd_num.svg
Normal file
153
4e/Nombres_Calculs/Cal_litt/Exo/fig/doubleProd_num.svg
Normal file
@@ -0,0 +1,153 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
version="1.1"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2">
|
||||
<defs
|
||||
id="defs4">
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3837" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3757" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-6" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-0" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-9" />
|
||||
</defs>
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
transform="translate(0,-308.2677)"
|
||||
id="layer1">
|
||||
<rect
|
||||
width="790.13379"
|
||||
height="462.88153"
|
||||
x="171.71411"
|
||||
y="180.42424"
|
||||
transform="translate(0,308.2677)"
|
||||
id="rect3753"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 368.31433,181.66855 0,460.39291"
|
||||
transform="translate(0,308.2677)"
|
||||
id="path3755"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<text
|
||||
x="53.505123"
|
||||
y="428.04099"
|
||||
transform="translate(0,308.2677)"
|
||||
id="text3759"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="53.505123"
|
||||
y="428.04099"
|
||||
id="tspan3761" /></text>
|
||||
<path
|
||||
d="m 47.283596,776.12643 95.811494,0"
|
||||
id="path3763"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 215.88694,457.58431 95.8115,0"
|
||||
id="path3763-1"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 636.46208,453.85141 95.8115,0"
|
||||
id="path3763-5"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 169.2255,308.58768 792.62238,0"
|
||||
transform="translate(0,308.2677)"
|
||||
id="path3835"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
d="m 40.439919,569.57178 95.811491,0"
|
||||
id="path3763-2"
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0" />
|
||||
<text
|
||||
x="252.59395"
|
||||
y="261.30408"
|
||||
transform="translate(0,308.2677)"
|
||||
id="text3898"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="252.59395"
|
||||
y="261.30408"
|
||||
id="tspan3900">1</tspan></text>
|
||||
<text
|
||||
x="634.59564"
|
||||
y="569.75635"
|
||||
id="text3902"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="634.59564"
|
||||
y="569.75635"
|
||||
id="tspan3904">2</tspan></text>
|
||||
<text
|
||||
x="250.84492"
|
||||
y="823.41003"
|
||||
id="text3906"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="250.84492"
|
||||
y="823.41003"
|
||||
id="tspan3908">3</tspan></text>
|
||||
<text
|
||||
x="634.54291"
|
||||
y="823.47156"
|
||||
id="text3910"
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"><tspan
|
||||
x="634.54291"
|
||||
y="823.47156"
|
||||
id="tspan3912">4</tspan></text>
|
||||
<path
|
||||
d="m 563.67026,441.72833 a 34.840546,32.351933 0 1 1 1.9e-4,0.10691"
|
||||
transform="translate(45.787964,368.8233)"
|
||||
id="path3914"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 563.67026,441.72833 a 34.840546,32.351933 0 1 1 1.9e-4,0.10691"
|
||||
transform="translate(45.787964,114.99384)"
|
||||
id="path3914-2"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 563.67026,441.72833 a 34.840546,32.351933 0 1 1 1.9e-4,0.10691"
|
||||
transform="translate(-338.10338,114.99384)"
|
||||
id="path3914-22"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
d="m 563.67026,441.72833 a 34.840546,32.351933 0 1 1 1.9e-4,0.10691"
|
||||
transform="translate(-338.10338,368.8233)"
|
||||
id="path3914-3"
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 6.7 KiB |
BIN
4e/Nombres_Calculs/Cal_litt/Exo/fig/simpleProd.pdf
Normal file
BIN
4e/Nombres_Calculs/Cal_litt/Exo/fig/simpleProd.pdf
Normal file
Binary file not shown.
123
4e/Nombres_Calculs/Cal_litt/Exo/fig/simpleProd.svg
Normal file
123
4e/Nombres_Calculs/Cal_litt/Exo/fig/simpleProd.svg
Normal file
@@ -0,0 +1,123 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.4 r9939"
|
||||
sodipodi:docname="Nouveau document 1">
|
||||
<defs
|
||||
id="defs4">
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3757"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-6"
|
||||
is_visible="true" />
|
||||
<inkscape:path-effect
|
||||
effect="spiro"
|
||||
id="path-effect3765-0"
|
||||
is_visible="true" />
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.80366138"
|
||||
inkscape:cx="526.18109"
|
||||
inkscape:cy="372.04724"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(0,-308.2677)">
|
||||
<rect
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="rect3753"
|
||||
width="790.13379"
|
||||
height="462.88153"
|
||||
x="171.71411"
|
||||
y="180.42424"
|
||||
transform="translate(0,308.2677)" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:5;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
d="m 368.31433,181.66855 0,460.39291"
|
||||
id="path3755"
|
||||
inkscape:path-effect="#path-effect3757"
|
||||
inkscape:original-d="m 368.31433,181.66855 0,460.39291"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="translate(0,308.2677)" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:36px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="53.505123"
|
||||
y="428.04099"
|
||||
id="text3759"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3761"
|
||||
x="53.505123"
|
||||
y="428.04099" /></text>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:4,4;stroke-dashoffset:0"
|
||||
d="m 51.016511,430.52958 95.811499,0"
|
||||
id="path3763"
|
||||
inkscape:path-effect="#path-effect3765"
|
||||
inkscape:original-d="m 51.016511,430.52958 95.811499,0"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="translate(0,308.2677)" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0"
|
||||
d="m 215.88694,457.58431 95.8115,0"
|
||||
id="path3763-1"
|
||||
inkscape:path-effect="#path-effect3765-6"
|
||||
inkscape:original-d="m 215.88694,457.58431 95.8115,0"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:4, 4;stroke-dashoffset:0"
|
||||
d="m 636.46208,453.85141 95.8115,0"
|
||||
id="path3763-5"
|
||||
inkscape:path-effect="#path-effect3765-0"
|
||||
inkscape:original-d="m 636.46208,453.85141 95.8115,0"
|
||||
inkscape:connector-curvature="0" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 4.5 KiB |
29
4e/Nombres_Calculs/Cal_litt/Exo/index.rst
Normal file
29
4e/Nombres_Calculs/Cal_litt/Exo/index.rst
Normal file
@@ -0,0 +1,29 @@
|
||||
Notes sur des exercices autour de la double distributivité
|
||||
##########################################################
|
||||
|
||||
:date: 2014-07-01
|
||||
:modified: 2014-07-01
|
||||
:tags: Nombres Calculs,Exo
|
||||
:category: 4e
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers double_prod_exo_2.tex <double_prod_exo_2.tex>`_
|
||||
|
||||
`Lien vers double_prod_exo_2.pdf <double_prod_exo_2.pdf>`_
|
||||
|
||||
`Lien vers double_prod_exo.tex <double_prod_exo.tex>`_
|
||||
|
||||
`Lien vers double_prod_exo_3.tex <double_prod_exo_3.tex>`_
|
||||
|
||||
`Lien vers double_prod_exo_3.pdf <double_prod_exo_3.pdf>`_
|
||||
|
||||
`Lien vers double_prod_exo.pdf <double_prod_exo.pdf>`_
|
||||
|
||||
`Lien vers fig/doubleProd_num.pdf <fig/doubleProd_num.pdf>`_
|
||||
|
||||
`Lien vers fig/doubleProd.pdf <fig/doubleProd.pdf>`_
|
||||
|
||||
`Lien vers fig/simpleProd.pdf <fig/simpleProd.pdf>`_
|
||||
Reference in New Issue
Block a user