59 lines
2.5 KiB
TeX
59 lines
2.5 KiB
TeX
\documentclass[a4paper,10pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classDS}
|
|
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
|
|
|
% Title Page
|
|
\titre{Europe}
|
|
% \quatreC \quatreD \troisB \troisPro
|
|
\classe{\quatreD}
|
|
\date{Octobre 2013}
|
|
% DS DSCorr DM DMCorr Corr
|
|
\typedoc{DM}
|
|
|
|
\geometry{left=15mm,right=15mm, top=15mm, bottom=15mm}
|
|
\fancyhf{}
|
|
|
|
\begin{document}
|
|
|
|
\begin{Exo}
|
|
\exo{Bonheur de voyager}
|
|
L'institut \textit{Happiness} a mis en place un coefficient mesurant le bonheur de voyager. Quand on commence un voyage, ce coefficient est égal à 1. Et à chaque voyage, on multiplie ce coefficient par le nombre indiqué sur la route, comme sur le schéma suivant
|
|
\begin{center}
|
|
\includegraphics{./fig/graph}
|
|
\end{center}
|
|
Ainsi si l'on fait le voyage de $A$ à $C$ en passant par $B$, le coefficient sera égal à $1 \times 2 \times (-3) = -6$.
|
|
|
|
\begin{enumerate}[a.]
|
|
\item Quelle sera la valeur du coefficient si l'on fait le voyage de $A$ à $D$ en passant par $E$?
|
|
\item Quelle sera la valeur du coefficient si l'on fait le voyage de $A$ à $D$ en passant par $B$ et $C$?
|
|
\item On veut aller de $A$ à $F$, quel sera le chemin qui donnera le plus grand coefficient bonheur? Expliquer.
|
|
\item Si on remplace la valeur du coefficient initial par -1, quel sera le chemin qui donnera le plus grand coefficient bonheur pour aller de $A$ à $F$?
|
|
\end{enumerate}
|
|
\end{Exo}
|
|
|
|
\vspace{1cm}
|
|
|
|
\setcounter{exo}{0}
|
|
\begin{Exo}
|
|
\exo{Bonheur de voyager}
|
|
L'institut \textit{Happiness} a mis en place un coefficient mesurant le bonheur de voyager. Quand on commence un voyage, ce coefficient est égal à 1. Et à chaque voyage, on multiplie ce coefficient par le nombre indiqué sur la route, comme sur le schéma suivant
|
|
\begin{center}
|
|
\includegraphics{./fig/graph}
|
|
\end{center}
|
|
Ainsi si l'on fait le voyage de $A$ à $C$ en passant par $B$, le coefficient sera égal à $1 \times 2 \times (-3) = -6$.
|
|
|
|
\begin{enumerate}[a.]
|
|
\item Quelle sera la valeur du coefficient si l'on fait le voyage de $A$ à $D$ en passant par $E$?
|
|
\item Quelle sera la valeur du coefficient si l'on fait le voyage de $A$ à $D$ en passant par $B$ et $C$?
|
|
\item On veut aller de $A$ à $F$, quel sera le chemin qui donnera le plus grand coefficient bonheur? Expliquer.
|
|
\item Si on remplace la valeur du coefficient initial par -1, quel sera le chemin qui donnera le plus grand coefficient bonheur pour aller de $A$ à $F$?
|
|
\end{enumerate}
|
|
|
|
\end{Exo}
|
|
\end{document}
|
|
|
|
%%% Local Variables:
|
|
%%% mode: latex
|
|
%%% TeX-master: "master"
|
|
%%% End:
|
|
|