115 lines
3.5 KiB
TeX
115 lines
3.5 KiB
TeX
\documentclass[a4paper,12pt,landscape, twocolumn]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classExo}
|
|
|
|
\usepackage{multicol}
|
|
|
|
% Title Page
|
|
\title{Identités remarquables et équations- Exercices}
|
|
\author{}
|
|
\date{}
|
|
|
|
\fancyhead[L]{Troisième}
|
|
\fancyhead[C]{\Thetitle}
|
|
\fancyhead[R]{\thepage}
|
|
|
|
|
|
\begin{document}
|
|
\thispagestyle{empty}
|
|
|
|
\begin{Exo}
|
|
Voici deux programmes de calcul:
|
|
|
|
\fbox{\colorbox{base2}{
|
|
\begin{minipage}[h]{0.2\textwidth}
|
|
\textbf{Programme A} \\ Choisir un nombre \\ Multiplier 6 \\ Ajouter par 3
|
|
\end{minipage}
|
|
}
|
|
}
|
|
\fbox{\colorbox{base2}{
|
|
\begin{minipage}[h]{0.2\textwidth}
|
|
\textbf{Programme B} \\ Choisir un nombre \\ Multiplier pas 4 \\ Enlever 20
|
|
\end{minipage}
|
|
}
|
|
}
|
|
|
|
\begin{enumerate}
|
|
\item Appliquer, en expliquant les étapes, le programme A à 3 et à 10.
|
|
\item Même chose avec le programme B.
|
|
\item Appliquer le programme A à $x$.
|
|
\item Même chose avec le programme B.
|
|
\item Quel chiffre doit-on choisir au départ pour que le programme A donne 9?
|
|
\item Quel chiffre doit-on choisir au départ pour que le programme A donne 21?
|
|
\item Quel chiffre doit-on choisir au départ pour que le programme B donne 9?
|
|
\end{enumerate}
|
|
\end{Exo}
|
|
|
|
\begin{Exo}
|
|
On a l'expression $5x + 6$
|
|
|
|
\begin{itemize}
|
|
\item Écrire un programme qui permet de calculer l'expression.
|
|
\item Quelle valeur de $x$ doit-on choisir pour que l'expression soit égale à 36?
|
|
\item Quelle valeur de $x$ doit-on choisir pour que l'expression soit égale à 10?
|
|
\end{itemize}
|
|
|
|
\end{Exo}
|
|
|
|
\eject
|
|
|
|
\begin{Exo}
|
|
\exo{Équations de degrés 1}
|
|
|
|
\begin{center}
|
|
\framebox{\parbox{0.4\textwidth}{
|
|
Résoudre l'équation $3x + 5 = 0$.
|
|
\begin{eqnarray*}
|
|
3x + 5 = 0 & \hspace{1cm} & \mbox{On ajoute l'opposé de 5} \\
|
|
3x + 5 \mathbf{+ (-5)} = \mathbf{-5} && \\
|
|
3x = -5 & \hspace{1cm} & \mbox{On multiplie par l'inverse de 3} \\
|
|
\mathbf{\frac{1}{3} \times }3x = \mathbf{ \frac{1}{3} \times }(-5) && \\
|
|
x = \frac{-5}{3} \approx 1,6
|
|
\end{eqnarray*}
|
|
La solution est $x = \frac{-5}{3} \approx 1,6$.
|
|
}}
|
|
\end{center}
|
|
|
|
\begin{enumerate}
|
|
\item Résoudre l'équation $4x + 7 = 0$.
|
|
\begin{eqnarray*}
|
|
4x + 7 = 0 & \hspace{0.5cm} & \mbox{On ajoute l'opposé de \parbox{1cm}{\dotfill}} \\[0.5cm]
|
|
4x + 7 + \parbox{1.5cm}{\dotfill}= \parbox{1.5cm}{\dotfill}&& \\[0.5cm]
|
|
4x = \parbox{1cm}{\dotfill}& \hspace{0.5cm} & \mbox{On multiplie par l'inverse de \parbox{1cm}{\dotfill}} \\[0.5cm]
|
|
\parbox{1.5cm}{\dotfill} \times 4x = \parbox{1.5cm}{\dotfill} \times \parbox{1cm}{\dotfill} && \\[0.5cm]
|
|
x = \frac{\parbox{1cm}{\dotfill}}{\parbox{1cm}{\dotfill}} \approx \parbox{1cm}{\dotfill}
|
|
\end{eqnarray*}
|
|
La solution est \parbox{2cm}{\dotfill}.
|
|
|
|
\item Résoudre les équations suivantes
|
|
\begin{multicols}{2}
|
|
\begin{enumerate}
|
|
\item $2x + 1 = 0$
|
|
\item $6x + 12 = 0$
|
|
\item $3x - 3 = 0$
|
|
\item $8x - 4 = 0$
|
|
\columnbreak
|
|
\item $-6x - 3 = 0$
|
|
\item $9 + 3x = 0$
|
|
\item $5 + 3x = 0$
|
|
\item $\frac{2}{3}x + 3 = 0$
|
|
\end{enumerate}
|
|
\end{multicols}
|
|
\end{enumerate}
|
|
\end{Exo}
|
|
|
|
|
|
\eject
|
|
|
|
|
|
|
|
\end{document}
|
|
|
|
%%% Local Variables:
|
|
%%% mode: latex
|
|
%%% TeX-master: "master"
|
|
%%% End:
|
|
|