2020-09-03 08:22:56 +00:00
|
|
|
\collectexercises{banque}
|
|
|
|
\begin{exercise}[subtitle={Parc de batteries}, step={1}, origin={Création}, topics={Aire sous la courbe}, tags={Intégrale, Analyse}]
|
|
|
|
On veut comparer 3 sources d'énergies pour recharger un parc de 5 batteries de 490Wh chacune.
|
|
|
|
|
|
|
|
\begin{itemize}
|
|
|
|
\item \textbf{Générateur thermique} d'une puissance constante de 110W.
|
|
|
|
\item \textbf{Électricité} en prenant compte heure pleine, heure creuse la capacité varie comme ci-dessous
|
|
|
|
|
|
|
|
\begin{tikzpicture}[scale=0.8]
|
|
|
|
\draw (0, 3) node [above] {Puissance (W)};
|
|
|
|
\draw (0, 1) node [left] {100};
|
|
|
|
\draw (12, 0) node [above right] {Heure};
|
|
|
|
\draw (3, 0) node [below] {6};
|
|
|
|
\draw (6, 0) node [below] {12};
|
|
|
|
\draw (9, 0) node [below] {18};
|
|
|
|
\draw (12, 0) node [below] {24};
|
|
|
|
\draw (12, 0) node [above right] {Heure};
|
|
|
|
\draw[very thin, gray, xstep=0.5] (0,0) grid (12,3);
|
|
|
|
\draw[->, very thick] (-0.5,0) -- (12.5,0);
|
|
|
|
\draw[->, very thick] (0,-0.5) -- (0,3.2);
|
|
|
|
|
|
|
|
\draw[very thick, color=red] plot coordinates{(0,1) (3,1) (3,2) (6,2) (6,1) (9,1) (9,2) (12,2) (12,1)};
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
|
|
|
\item \textbf{Solaire} en prenant compte la variation de l'ensoleillement la capacité varie comme ci-dessous
|
|
|
|
|
|
|
|
\begin{tikzpicture}[scale=0.8]
|
|
|
|
\draw (0, 3) node [above] {Puissance (W)};
|
|
|
|
\draw (0, 1) node [left] {100};
|
|
|
|
\draw (12, 0) node [above right] {Heure};
|
|
|
|
\draw (3, 0) node [below] {6};
|
|
|
|
\draw (6, 0) node [below] {12};
|
|
|
|
\draw (9, 0) node [below] {18};
|
|
|
|
\draw (12, 0) node [below] {24};
|
|
|
|
\draw (12, 0) node [above right] {Heure};
|
|
|
|
\draw[very thin, gray, xstep=0.5] (0,0) grid (12,3);
|
|
|
|
\draw[->, very thick] (-0.5,0) -- (12.5,0);
|
|
|
|
\draw[->, very thick] (0,-0.5) -- (0,3.2);
|
|
|
|
|
|
|
|
\draw[very thick, color=red] plot coordinates{(0, 0) (3,0) (5.5,3) (7,3) (10,0) (12,0) };
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
\begin{enumerate}
|
|
|
|
\item Combien de batteries pourront être rechargées entre 14h et 20h avec chacune de ses 3 solutions?
|
|
|
|
\item Quels sont les solutions qui permettent de recharger tout le parc de batteries sur une journée?
|
|
|
|
\end{enumerate}
|
|
|
|
\end{exercise}
|
|
|
|
|
2020-09-03 08:59:47 +00:00
|
|
|
\begin{exercise}[subtitle={Aires et intégrales}, step={2}, origin={Création}, topics={Aire sous la courbe}, tags={Intégrale, Analyse}]
|
|
|
|
\setlength{\columnseprule}{0pt}
|
|
|
|
\begin{enumerate}
|
|
|
|
\item
|
|
|
|
Mettre en valeur les zones correspondantes à l'intégrales puis calculer ces quantités
|
|
|
|
\begin{multicols}{4}
|
|
|
|
\begin{enumerate}
|
|
|
|
\item
|
|
|
|
$\displaystyle
|
|
|
|
\int_2^5 3 dx =
|
|
|
|
$
|
|
|
|
|
|
|
|
\hspace{-1cm}
|
|
|
|
\begin{tikzpicture}[yscale=.4, xscale=0.8]
|
|
|
|
\tkzInit[xmin=0,xmax=5,xstep=1,
|
|
|
|
ymin=0,ymax=4,ystep=1]
|
|
|
|
\tkzGrid
|
|
|
|
\tkzGrid[sub, subxstep=0.5, subystep=1]
|
|
|
|
\tkzAxeXY[up space=0.5,right space=.2]
|
|
|
|
\tkzFct[domain = 0:5, line width=1pt]{3}
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
|
|
|
\item
|
|
|
|
$\displaystyle
|
|
|
|
\int_{2}^{5} x dx =
|
|
|
|
$
|
|
|
|
|
|
|
|
\hspace{-1cm}
|
|
|
|
\begin{tikzpicture}[yscale=.4, xscale=0.8]
|
|
|
|
\tkzInit[xmin=0,xmax=5,xstep=1,
|
|
|
|
ymin=0,ymax=5,ystep=1]
|
|
|
|
\tkzGrid
|
|
|
|
\tkzGrid[sub, subxstep=0.5, subystep=1]
|
|
|
|
\tkzAxeXY[up space=0.5,right space=.2]
|
|
|
|
\tkzFct[domain = 0:5, line width=1pt]{x}
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
|
|
|
\item
|
|
|
|
$\displaystyle
|
|
|
|
\int_0^2 2x dx =
|
|
|
|
$
|
|
|
|
|
|
|
|
\hspace{-1cm}
|
|
|
|
\begin{tikzpicture}[yscale=.4, xscale=0.8]
|
|
|
|
\tkzInit[xmin=-1,xmax=4,xstep=1,
|
|
|
|
ymin=-4,ymax=8,ystep=2]
|
|
|
|
\tkzGrid
|
|
|
|
%\tkzGrid[sub, subxstep=0.5, subystep=1]
|
|
|
|
\tkzAxeXY[up space=0.5,right space=.2]
|
|
|
|
\tkzFct[domain = -1:4, line width=1pt]{2*x}
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
|
|
|
\item
|
|
|
|
$\displaystyle
|
|
|
|
\int_{0}^{4} 0,5x + 1 dx =
|
|
|
|
$
|
|
|
|
|
|
|
|
\hspace{-1cm}
|
|
|
|
\begin{tikzpicture}[yscale=.4, xscale=0.8]
|
|
|
|
\tkzInit[xmin=0,xmax=5,xstep=1,
|
|
|
|
ymin=0,ymax=5,ystep=1]
|
|
|
|
\tkzGrid
|
|
|
|
\tkzGrid[sub, subxstep=0.5, subystep=1]
|
|
|
|
\tkzAxeXY[up space=0.5,right space=.2]
|
|
|
|
\tkzFct[domain = 0:5, line width=1pt]{0.5*x+1}
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
|
|
|
\end{enumerate}
|
|
|
|
\end{multicols}
|
|
|
|
|
|
|
|
\item Calculer les quantités suivantes
|
|
|
|
\begin{multicols}{4}
|
|
|
|
\begin{enumerate}
|
|
|
|
\item $\displaystyle \int_{5}^{10} 4 dx$
|
|
|
|
\item $\displaystyle \int_{0}^{100} 5 dx$
|
|
|
|
\item $\displaystyle \int_{5}^{10} 5x dx$
|
|
|
|
\item $\displaystyle \int_{5}^{10} 5x + 4 dx$
|
|
|
|
\end{enumerate}
|
|
|
|
\end{multicols}
|
|
|
|
|
|
|
|
\item Comment peut-on calculer la quantité $\displaystyle \int_{a}^{b} f(x) dx$? Quand
|
|
|
|
\begin{multicols}{3}
|
|
|
|
\begin{enumerate}
|
|
|
|
\item $f$ est une fonction constante.
|
|
|
|
\item $f$ est une fonction linéaire.
|
|
|
|
\item $f$ est une fonction affine.
|
|
|
|
\end{enumerate}
|
|
|
|
\end{multicols}
|
|
|
|
\end{enumerate}
|
|
|
|
\end{exercise}
|
|
|
|
|
|
|
|
\begin{exercise}[subtitle={Calculs techniques}, step={2}, origin={Création}, topics={Aire sous la courbe}, tags={Intégrale, Analyse}]
|
|
|
|
\setlength{\columnseprule}{0pt}
|
|
|
|
Calculer les quantités suivantes
|
|
|
|
\begin{multicols}{4}
|
|
|
|
\begin{enumerate}
|
|
|
|
\item $\displaystyle \int_{1}^{2} 10 dx$
|
|
|
|
\item $\displaystyle \int_{0}^{10} 0.5 dx$
|
|
|
|
\item $\displaystyle \int_{1}^{2} 2x dx$
|
|
|
|
\item $\displaystyle \int_{0}^{10} 0.1x dx$
|
|
|
|
|
|
|
|
\item $\displaystyle \int_{1}^{2} 2x+10 dx$
|
|
|
|
\item $\displaystyle \int_{0}^{10} 0.1x + 0.5 dx$
|
|
|
|
\item $\displaystyle \int_{5}^{10} 2x+1 dx$
|
|
|
|
\item $\displaystyle \int_{0.1}^{0.5} 10x + 100 dx$
|
|
|
|
\end{enumerate}
|
|
|
|
\end{multicols}
|
|
|
|
\end{exercise}
|
2020-09-03 08:22:56 +00:00
|
|
|
|
|
|
|
\collectexercisesstop{banque}
|