Feat: QF et programme semaine sti2d
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
BIN
TST_sti2d/Questions_Flash/P2/QF_20_12_07-1.pdf
Normal file
BIN
TST_sti2d/Questions_Flash/P2/QF_20_12_07-1.pdf
Normal file
Binary file not shown.
67
TST_sti2d/Questions_Flash/P2/QF_20_12_07-1.tex
Executable file
67
TST_sti2d/Questions_Flash/P2/QF_20_12_07-1.tex
Executable file
@@ -0,0 +1,67 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale ST \\ Spé sti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
Calculer la primitive de
|
||||
\[
|
||||
f(x) = 2x^3 - 6x^2 + 12
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Soit
|
||||
\[
|
||||
z = \frac{-\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i
|
||||
\]
|
||||
Calculer le module et l'argument de $z$.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
\vfill
|
||||
Soit $z$ le nombre complexe de module $r=0.1$ et d'argument $\theta = \dfrac{-4\pi}{2}$
|
||||
\vfill
|
||||
Écrire $z$ sous forme $a + bi$.
|
||||
\vfill
|
||||
\pause
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[baseline=(a.north), xscale=0.7, yscale=0.7]
|
||||
\tkzInit[xmin=-3,xmax=3,xstep=1,
|
||||
ymin=-3,ymax=3,ystep=1]
|
||||
\tkzGrid
|
||||
\draw (1, 0) node [below right] {1};
|
||||
\draw (0, 1) node [above left] {$i$};
|
||||
\draw [->, very thick] (-3, 0) -- (3, 0);
|
||||
\draw [->, very thick] (0, -3) -- (0, 3);
|
||||
%\tkzAxeXY
|
||||
\foreach \x in {0,1,...,3} {
|
||||
% dots at each point
|
||||
\draw[black] (0, 0) circle(\x);
|
||||
}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
TST_sti2d/Questions_Flash/P2/QF_20_12_07-2.pdf
Normal file
BIN
TST_sti2d/Questions_Flash/P2/QF_20_12_07-2.pdf
Normal file
Binary file not shown.
55
TST_sti2d/Questions_Flash/P2/QF_20_12_07-2.tex
Executable file
55
TST_sti2d/Questions_Flash/P2/QF_20_12_07-2.tex
Executable file
@@ -0,0 +1,55 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale ST \\ Spé sti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
Calculer une primitive de
|
||||
\[
|
||||
f(x) = 2x(4x + 2)
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Une primitive de $f(x) = 2x+1$ est
|
||||
\[
|
||||
F(x) = x^2 + x
|
||||
\]
|
||||
Calculer
|
||||
\[
|
||||
\int_2^3 f(x)\; dx =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Soit
|
||||
\[
|
||||
z = 1 - \sqrt{3}i
|
||||
\]
|
||||
Calculer le module et l'argument de $z$.
|
||||
\vfill
|
||||
Soit $z$ le nombre complexe de module $r=0.1$ et d'argument $\theta = \dfrac{-4\pi}{2}$
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
Reference in New Issue
Block a user