Feat: QF et programme semaine sti2d
All checks were successful
continuous-integration/drone/push Build is passing

This commit is contained in:
2020-12-06 09:10:51 +01:00
parent f174f3bcb6
commit 13ca265b07
5 changed files with 141 additions and 20 deletions

Binary file not shown.

View File

@@ -0,0 +1,67 @@
\documentclass[14pt]{classPres}
\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Terminale ST \\ Spé sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 1}
Calculer la primitive de
\[
f(x) = 2x^3 - 6x^2 + 12
\]
\end{frame}
\begin{frame}{Calcul 2}
Soit
\[
z = \frac{-\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i
\]
Calculer le module et l'argument de $z$.
\end{frame}
\begin{frame}{Calcul 3}
\vfill
Soit $z$ le nombre complexe de module $r=0.1$ et d'argument $\theta = \dfrac{-4\pi}{2}$
\vfill
Écrire $z$ sous forme $a + bi$.
\vfill
\pause
\begin{center}
\begin{tikzpicture}[baseline=(a.north), xscale=0.7, yscale=0.7]
\tkzInit[xmin=-3,xmax=3,xstep=1,
ymin=-3,ymax=3,ystep=1]
\tkzGrid
\draw (1, 0) node [below right] {1};
\draw (0, 1) node [above left] {$i$};
\draw [->, very thick] (-3, 0) -- (3, 0);
\draw [->, very thick] (0, -3) -- (0, 3);
%\tkzAxeXY
\foreach \x in {0,1,...,3} {
% dots at each point
\draw[black] (0, 0) circle(\x);
}
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@@ -0,0 +1,55 @@
\documentclass[14pt]{classPres}
\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Terminale ST \\ Spé sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 1}
Calculer une primitive de
\[
f(x) = 2x(4x + 2)
\]
\end{frame}
\begin{frame}{Calcul 2}
Une primitive de $f(x) = 2x+1$ est
\[
F(x) = x^2 + x
\]
Calculer
\[
\int_2^3 f(x)\; dx =
\]
\end{frame}
\begin{frame}{Calcul 3}
Soit
\[
z = 1 - \sqrt{3}i
\]
Calculer le module et l'argument de $z$.
\vfill
Soit $z$ le nombre complexe de module $r=0.1$ et d'argument $\theta = \dfrac{-4\pi}{2}$
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}