Feat: ajout de la correction et d'une vidéo pour l'exercice de
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
multiplication des complexes
This commit is contained in:
parent
8806e79fcb
commit
85b1151840
Binary file not shown.
@ -20,4 +20,12 @@
|
|||||||
\printcollection{banque}
|
\printcollection{banque}
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\xsimsetup{
|
||||||
|
step=1,
|
||||||
|
print-collection/print=solutions
|
||||||
|
}
|
||||||
|
\printcollection{banque}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
@ -63,6 +63,57 @@
|
|||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{exercise}
|
\end{exercise}
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
\hspace{-1cm}
|
||||||
|
\begin{tabular}{|c|*{6}{p{4.25cm}|}}
|
||||||
|
\hline
|
||||||
|
& A & B & C & D \\
|
||||||
|
\hline
|
||||||
|
A & $-2 + 2 \sqrt{3} i$ & $2 \sqrt{3} + 2 i$ & $\left( - \frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}\right) + \left(- \frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2} \right) i$ & $\left(- 3 \sqrt{6} + 3 \sqrt{2}\right) + \left(3 \sqrt{2} + 3 \sqrt{6} \right)i$\\
|
||||||
|
\hline
|
||||||
|
B & $2 \sqrt{3} + 2 i$ & $2 - 2 \sqrt{3} i$ & $\left(- \frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}\right) + \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2}\right)i$ & $\left(3 \sqrt{2} + 3 \sqrt{6}\right) + \left( - 3 \sqrt{2} + 3 \sqrt{6} \right)i$\\
|
||||||
|
\hline
|
||||||
|
C & $\left( - \frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}\right) + \left(- \frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2} \right) i$ & $\left(- \frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}\right) + \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2}\right)i$ & $- i$ & $-6$\\
|
||||||
|
\hline
|
||||||
|
D & $\left(- 3 \sqrt{6} + 3 \sqrt{2}\right) + \left(3 \sqrt{2} + 3 \sqrt{6} \right)i$ & $\left( 3 \sqrt{2} + 3 \sqrt{6}\right) + \left( - 3 \sqrt{2} + 3 \sqrt{6} \right)i$& $-6$ & $36 i$\\
|
||||||
|
\hline
|
||||||
|
|
||||||
|
\end{tabular}
|
||||||
|
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
{\small
|
||||||
|
\hspace{-1cm}
|
||||||
|
\begin{tabular}{|c|*{6}{p{1.5cm}|}}
|
||||||
|
\hline
|
||||||
|
Module & A($r= 2$) & B($r= 2$) & C ($r= 1$)& D($r= 6$) \\
|
||||||
|
\hline
|
||||||
|
A ($r= 2$) & 4 & 4 & 2 & 12\\
|
||||||
|
\hline
|
||||||
|
B ($r= 2$) & 4 & 4 & &\\
|
||||||
|
\hline
|
||||||
|
C ($r= 1$) & 2 & & &\\
|
||||||
|
\hline
|
||||||
|
D ($r= 6$) & 12 & & &\\
|
||||||
|
\hline
|
||||||
|
\end{tabular}
|
||||||
|
\hfill
|
||||||
|
\begin{tabular}{|c|*{6}{p{1.5cm}|}}
|
||||||
|
\hline
|
||||||
|
Argument & A($\theta= \frac{\pi}{3}$) & B($\theta= \frac{5\pi}{6}$) & C($\theta= \frac{3\pi}{4}$) & D($\theta= \frac{\pi}{4}$) \\
|
||||||
|
\hline
|
||||||
|
A ($\theta= \frac{\pi}{3}$) & $\frac{2\pi}{3}$ & $\frac{7\pi}{6}$ & $\frac{13\pi}{12}$ & $\frac{7\pi}{12}$ \\
|
||||||
|
\hline
|
||||||
|
B ($\theta= \frac{5\pi}{6}$) & $\frac{7\pi}{6}$ & $\frac{10\pi}{6}$ & &\\
|
||||||
|
\hline
|
||||||
|
C ($\theta= \frac{3\pi}{4}$) & $\frac{13\pi}{12}$ & & &\\
|
||||||
|
\hline
|
||||||
|
D ($\theta= \frac{\pi}{4}$) & $\frac{7\pi}{12}$^& & &\\
|
||||||
|
\hline
|
||||||
|
\end{tabular}
|
||||||
|
}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
\begin{exercise}[subtitle={Algébrique -> Exponentielle}, step={2}, origin={Création}, topics={Exponentielle complexe}, tags={Complexe}]
|
\begin{exercise}[subtitle={Algébrique -> Exponentielle}, step={2}, origin={Création}, topics={Exponentielle complexe}, tags={Complexe}]
|
||||||
\begin{multicols}{3}
|
\begin{multicols}{3}
|
||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
|
@ -2,7 +2,7 @@ Exponentielle complexe
|
|||||||
######################
|
######################
|
||||||
|
|
||||||
:date: 2021-01-14
|
:date: 2021-01-14
|
||||||
:modified: 2021-01-26
|
:modified: 2021-01-27
|
||||||
:authors: Benjamin Bertrand
|
:authors: Benjamin Bertrand
|
||||||
:tags: Complexe
|
:tags: Complexe
|
||||||
:category: TST_sti2d
|
:category: TST_sti2d
|
||||||
@ -17,6 +17,8 @@ Par groupe, les élèves cherchent le module et l'argument de 4 nombres complexe
|
|||||||
:height: 200px
|
:height: 200px
|
||||||
:alt: Multiplier des nombres complexes et trouver une relation sur le module et l'argument.
|
:alt: Multiplier des nombres complexes et trouver une relation sur le module et l'argument.
|
||||||
|
|
||||||
|
`Correction en vidéo des calculs présents dans l'exercice <https://video.opytex.org/videos/watch/93620779-8ce1-4d9b-a8d2-6deb269995cb>`_
|
||||||
|
|
||||||
Bilan
|
Bilan
|
||||||
|
|
||||||
.. image:: ./1B_forme_expo.pdf
|
.. image:: ./1B_forme_expo.pdf
|
||||||
|
Loading…
Reference in New Issue
Block a user