Feat: ajout d'un calcul avec une fraction
All checks were successful
continuous-integration/drone/push Build is passing

This commit is contained in:
Bertrand Benjamin 2021-10-15 06:19:56 +02:00
parent 28bdceeb43
commit ec85d4e320
2 changed files with 8 additions and 4 deletions

View File

@ -222,14 +222,16 @@
\item $3\times(3x + 8)$
\item $4(10x + 5)$
\item $10(- 9x + 6)$
\item $- 3(2x - 10)$
\item $- 9x(- 4x - 7)$
\item $8x(3x - 4)$
\item $- 10x(- 5x - 9)$
\item $- 5x(- 4x + 9) + 3$
\item $ - 3x(- 9x - 8) - 4x$
\item $4x(- 5x - 2) - 5x$
\item $\dfrac{4}{7} \times x(6x + 7)$
\end{enumerate}
\end{multicols}
\end{exercise}
@ -239,14 +241,16 @@
\item $3(3x + 8) = 3 \times 3x + 3 \times 8 = 3 \times 3 \times x + 24 = 9x + 24$
\item $4(10x + 5) = 4 \times 10x + 4 \times 5 = 4 \times 10 \times x + 20 = 40x + 20$
\item $10(- 9x + 6) = 10 \times - 9x + 10 \times 6 = 10(- 9) \times x + 60 = - 90x + 60$
\item $- 3(2x - 10) = - 3 \times 2x - 3(- 10) = - 3 \times 2 \times x + 30 = - 6x + 30$
\item $- 9x(- 4x - 7) = - 9x \times (- 4x) - 9x\times(- 7) = - 9\times(- 4) \times x^{1 + 1} - 7\times(- 9) \times x = 36x^{2} + 63x$
\item $8x(3x - 4) = 8x \times 3x + 8x(- 4) = 8 \times 3 \times x^{1 + 1} - 4 \times 8 \times x = 24x^{2} - 32x$
\item $- 10x(- 5x - 9) = - 10x \times - 5x - 10x(- 9) = - 10(- 5) \times x^{1 + 1} - 9(- 10) \times x = 50x^{2} + 90x$
\item $- 5x(- 4x + 9) + 3 = - 5x \times - 4x - 5x \times 9 + 3 = - 5(- 4) \times x^{1 + 1} + 9(- 5) \times x + 3 = 20x^{2} - 45x + 3$
\item $- 3x(- 9x - 8) - 4x = - 3x \times - 9x - 3x(- 8) - 4x = - 3(- 9) \times x^{1 + 1} - 8(- 3) \times x - 4x = 27x^{2} + 24x - 4x = 27x^{2} + (24 - 4) \times x = 27x^{2} + 20x$
\item $4x(- 5x - 2) - 5x = 4x \times - 5x + 4x(- 2) - 5x = 4(- 5) \times x^{1 + 1} - 2 \times 4 \times x - 5x = - 20x^{2} - 8x - 5x = - 20x^{2} + (- 8 - 5) \times x = - 20x^{2} - 13x$
\item $\dfrac{4}{7} \times x(6x + 7) = \dfrac{4}{7} \times x \times 6x + \dfrac{4}{7} \times x \times 7 = \dfrac{4}{7} \times 6 \times x^{1 + 1} + 7 \times \dfrac{4}{7} \times x = \dfrac{4 \times 6}{7} \times x^{2} + \dfrac{7 \times 4}{7} \times x = \dfrac{24}{7} \times x^{2} + \dfrac{28}{7} \times x$
\end{enumerate}
\end{solution}