feat(2nd): ajoute exo techniques sur inéquation
This commit is contained in:
parent
c63d442803
commit
cd30afdb99
BIN
2nd/15_Intervalles_et_nombres_reels/4E_sol_ineq.pdf
Normal file
BIN
2nd/15_Intervalles_et_nombres_reels/4E_sol_ineq.pdf
Normal file
Binary file not shown.
22
2nd/15_Intervalles_et_nombres_reels/4E_sol_ineq.tex
Normal file
22
2nd/15_Intervalles_et_nombres_reels/4E_sol_ineq.tex
Normal file
@ -0,0 +1,22 @@
|
||||
\documentclass[a4paper,10pt]{article}
|
||||
\usepackage{myXsim}
|
||||
|
||||
\author{Benjamin Bertrand}
|
||||
\title{Intervalles - Exercices}
|
||||
\date{Mai 2023}
|
||||
|
||||
\DeclareExerciseCollection[step=4]{banque}
|
||||
\xsimsetup{collect}
|
||||
|
||||
\pagestyle{empty}
|
||||
|
||||
\begin{document}
|
||||
\input{exercises.tex}
|
||||
|
||||
\setcounter{exercise}{7}
|
||||
\printcollection{banque}
|
||||
\vfill
|
||||
\printcollection{banque}
|
||||
\vfill
|
||||
|
||||
\end{document}
|
@ -177,5 +177,67 @@
|
||||
\item $\dfrac{-3}{3} \ldots \intFF{-1}{3}$
|
||||
\end{enumerate}
|
||||
\end{multicols}
|
||||
|
||||
\pagebreak
|
||||
\end{exercise}
|
||||
|
||||
|
||||
\begin{exercise}[subtitle={Équations graphiques}, step={4}, origin={Ma tête}, topics={ Intervalles et nombres réels }, tags={ Inéquation, Intervalle, Nombres }, mode={\trainMode}]
|
||||
Résoudre les inéquations en utilisant les tableaux de signes
|
||||
\begin{multicols}{2}
|
||||
\begin{enumerate}
|
||||
\item $f(x) \leq 0$
|
||||
\begin{tikzpicture}[baseline=(a.north)]
|
||||
\tkzTabInit[lgt=2,espcl=1]{$ x $/1,$ f(f) $/1}{-5, 1, 2, $+\infty$}
|
||||
\tkzTabLine{, +, z, -, z, + , }
|
||||
\end{tikzpicture}
|
||||
\item $g(x) < 0$
|
||||
\begin{tikzpicture}[baseline=(a.north)]
|
||||
\tkzTabInit[lgt=2,espcl=1]{$ x $/1,$ g(f) $/1}{$-\infty$, 0, 10, $+\infty$}
|
||||
\tkzTabLine{, -, z, +, z, - , }
|
||||
\end{tikzpicture}
|
||||
\item $z(t) > 0$
|
||||
\begin{tikzpicture}[baseline=(a.north)]
|
||||
\tkzTabInit[lgt=2,espcl=1]{$ t $/1,$ z(t) $/1}{-5, -1, 3, 4, 5}
|
||||
\tkzTabLine{, +, z, -, z, +, z, - , }
|
||||
\end{tikzpicture}
|
||||
\item $z(t) \leq 0$
|
||||
\begin{tikzpicture}[baseline=(a.north)]
|
||||
\tkzTabInit[lgt=2,espcl=1]{$ t $/1,$ z(t) $/1}{0, 1, 2, 3, 4}
|
||||
\tkzTabLine{, -, z, +, z, -, z, + , }
|
||||
\end{tikzpicture}
|
||||
\end{enumerate}
|
||||
\end{multicols}
|
||||
\end{exercise}
|
||||
|
||||
\begin{exercise}[subtitle={Équations et tableau de signes}, step={4}, origin={Ma tête}, topics={ Intervalles et nombres réels }, tags={ Inéquation, Intervalle, Nombres }, mode={\trainMode}]
|
||||
\begin{minipage}{0.4\linewidth}
|
||||
Sur le graphique ci-contre, on a tracé les représentations de 3 fonctions $f$, $g$ et $h$.
|
||||
|
||||
Résoudre les inéquations suivantes en utilisant le graphique, vous donnerez les solutions sous forme d'intervalles.
|
||||
\begin{enumerate}
|
||||
\item $f(x) < 1$
|
||||
\item $f(x) \geq 0$
|
||||
\item $g(x) \leq 1$
|
||||
\item $g(x) > 0$
|
||||
\item $h(x) < g(x)$
|
||||
\item $h(x) \geq 0$
|
||||
\end{enumerate}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}{0.5\linewidth}
|
||||
\begin{tikzpicture}[xscale=1.5, yscale=0.8]
|
||||
\tkzInit[xmin=-3,xmax=3,xstep=1,
|
||||
ymin=-3,ymax=4,ystep=1]
|
||||
\tkzGrid
|
||||
\tkzAxeXY
|
||||
\tkzFct[domain = -3:3,color=red,very thick]{-2*x**2 + 3};
|
||||
\tkzText(1.8, -2.2){$\mathcal{C}_f$};
|
||||
|
||||
\tkzFct[domain = -3:3,color=green,very thick]{-0.5*x+1};
|
||||
\tkzText(-2.5, 1.8){$\mathcal{C}_g$};
|
||||
|
||||
\tkzFct[domain = -3:3,color=blue,very thick]{1/x};
|
||||
\tkzText(-2.5, -1.5){$\mathcal{C}_h$};
|
||||
\end{tikzpicture}
|
||||
\end{minipage}
|
||||
\end{exercise}
|
||||
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user