97 lines
2.1 KiB
TeX
Executable File
97 lines
2.1 KiB
TeX
Executable File
\documentclass[12pt]{classPres}
|
|
\usepackage{tkz-fct}
|
|
\usepackage{pgfplots}
|
|
\usetikzlibrary{decorations.markings}
|
|
\pgfplotsset{compat=1.18}
|
|
|
|
\author{}
|
|
\title{}
|
|
\date{}
|
|
|
|
\begin{document}
|
|
\begin{frame}{Questions flashs}
|
|
\begin{center}
|
|
\vfill
|
|
Première ST
|
|
\vfill
|
|
30 secondes par calcul
|
|
\vfill
|
|
\textbf{Calculatrice non autorisée}
|
|
\vfill
|
|
\tiny \jobname
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Calcul 1}
|
|
% Racine
|
|
Est-ce que $x = -2$ est une racine de
|
|
\[
|
|
f(x) = 4x^2 + 6x - 4
|
|
\]
|
|
\end{frame}
|
|
|
|
\begin{frame}{Calcul 2}
|
|
% Dérivation
|
|
\vfill
|
|
Calculer la dérivée de la fonction
|
|
\[
|
|
f(x) = 2x^3 - 5x + 10
|
|
\]
|
|
\vfill
|
|
\end{frame}
|
|
|
|
\begin{frame}[fragile]{Calcul 3}
|
|
% Probabilités
|
|
Écrire le calcul qui permet d'avoir $P(\mbox{B puis A})$
|
|
\begin{center}
|
|
\begin{tikzpicture}[grow=down, sloped, scale=1.5]
|
|
\node {.}
|
|
child {node {A}
|
|
child {node {C}
|
|
edge from parent
|
|
node[above] {0.7}
|
|
}
|
|
child {node {B}
|
|
edge from parent
|
|
node[above] {0.3}
|
|
}
|
|
edge from parent
|
|
node[above] {0.6}
|
|
}
|
|
child[missing] {}
|
|
child { node {B}
|
|
child {node {A}
|
|
edge from parent
|
|
node[above] {0.2}
|
|
}
|
|
child {node {C}
|
|
edge from parent
|
|
node[above] {0.8}
|
|
}
|
|
edge from parent
|
|
node[above] {0.4}
|
|
}%
|
|
;
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}[fragile]{Calcul 4}
|
|
% poy deg 2
|
|
|
|
Quelle est l'allure de la représentation graphique de la fonction suivante
|
|
|
|
\[
|
|
f(x) = -2x^2 + 5
|
|
\]
|
|
\end{frame}
|
|
|
|
\begin{frame}{Fin}
|
|
\begin{center}
|
|
On retourne son papier.
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
|
|
\end{document}
|