2020-2021/TST_sti2d/09_Limites_de_fonctions/exercises.tex

388 lines
17 KiB
TeX
Raw Normal View History

\collectexercises{banque}
\begin{exercise}[subtitle={Limites de fonctions}, step={1}, origin={Création}, topics={Limites de fonctions}, tags={Fonctions, limites}]
2021-04-27 13:54:04 +00:00
\begin{tikzpicture}[yscale=.5, xscale=.8]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=0,ymax=10,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:5, line width=1pt]{x**2}
\tkzText[draw,fill = brown!20](3,1){$f(x)=x^2$}
\end{tikzpicture}
\hfill
\begin{tikzpicture}[yscale=0.5, xscale=1]
\tkzInit[xmin=-4,xmax=4,xstep=1,
ymin=-10,ymax=10,ystep=2]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:5, line width=1pt]{x**3}
\tkzText[draw,fill = brown!20](1,-2){$f(x)=x^3$}
\end{tikzpicture}
2021-04-27 13:54:04 +00:00
\begin{tikzpicture}[yscale=1, xscale=.8]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=0,ymax=5,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:5, line width=1pt]{exp(x)}
\tkzText[draw,fill = brown!20](2,1){$f(x)=\text{e}^{x}$}
\end{tikzpicture}
\hfill
\begin{tikzpicture}[yscale=1, xscale=1.5]
\tkzInit[xmin=0,xmax=5,xstep=1,
ymin=-3,ymax=3,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = 0.01:5, line width=1pt]{log(x)}
\tkzText[draw,fill = brown!20](2,2){$f(x)=\ln(x)$}
\end{tikzpicture}
2021-04-27 13:54:04 +00:00
\begin{tikzpicture}[yscale=1.5, xscale=1]
\tkzInit[xmin=-2,xmax=7,xstep=1,
ymin=-2,ymax=2,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -2:8, line width=1pt]{1 - exp(-x)}
\tkzText[draw,fill = brown!20](1,1.5){$f(x)=1-e^{-x}$}
\end{tikzpicture}
\hfill
\begin{tikzpicture}[yscale=.5, xscale=.8]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-5,ymax=5,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:-0.01, line width=1pt]{1/x}
\tkzFct[domain = 0.01:5, line width=1pt]{1/x}
\tkzText[draw,fill = brown!20](-2,2){$f(x)=\frac{1}{x}$}
\end{tikzpicture}
2021-04-27 13:54:04 +00:00
\begin{tikzpicture}[yscale=0.5, xscale=.8]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-1,ymax=10,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:-0.01, line width=1pt]{1/x**2}
\tkzFct[domain = 0.01:5, line width=1pt]{1/x**2}
\tkzText[draw,fill = brown!20](3,3){$f(x)=\frac{1}{x^2}$}
\end{tikzpicture}
\hfill
\begin{tikzpicture}[yscale=1.5, xscale=.8]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-2,ymax=2,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:5, line width=1pt]{cos(x)}
\tkzText[draw,fill = brown!20](3,1){$f(x)=\cos{x}$}
\end{tikzpicture}
2021-04-27 13:54:04 +00:00
À l'aide des graphiques ci-dessus, déterminer graphiquement les quantités suivantes
2021-04-27 13:54:04 +00:00
\begin{multicols}{3}
\begin{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} x^2 = $
\item $\ds \lim_{x\rightarrow -\infty} x^2 = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} x^3 = $
\item $\ds \lim_{x\rightarrow -\infty} x^3 = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} e^x = $
\item $\ds \lim_{x\rightarrow -\infty} e^x = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} \ln(x) = $
\item $\ds \lim_{x\rightarrow 0} \ln(x) = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} 1-e^{-x} = $
\item $\ds \lim_{x\rightarrow -\infty} 1-e^{-x} = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow -\infty} \frac{1}{x} = $
\item $\ds \lim_{\substack{x\rightarrow 0 \\ <}} \frac{1}{x} = $
\item $\ds \lim_{\substack{x\rightarrow 0 \\ >}} \frac{1}{x} = $
\item $\ds \lim_{x\rightarrow +\infty} \frac{1}{x} = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow -\infty} \frac{1}{x^2} = $
\item $\ds \lim_{\substack{x\rightarrow 0 \\ <}} \frac{1}{x^2} = $
\item $\ds \lim_{\substack{x\rightarrow 0 \\ >}} \frac{1}{x^2} = $
\item $\ds \lim_{x\rightarrow +\infty} \frac{1}{x^2} = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} \cos(x) = $
\item $\ds \lim_{x\rightarrow -\infty} \cos(x) = $
\end{enumerate}
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{exercise}[subtitle={Découverte des limites de polynômes}, step={2}, origin={Création}, topics={Limites de fonctions}, tags={Fonctions, limites}]
Cet exercice se réaliser avec Géogebra. Son but est de déterminer deux règles pour calculer les limites de polynômes.
\begin{enumerate}
2021-04-27 13:54:04 +00:00
\item Limites de fonctions du type $x^n$$n$ est un entier non nul.
\begin{enumerate}
2021-04-27 13:54:04 +00:00
\item Régler les curseurs a, b, c, d, e et f pour obtenir le graphique de la fonction $P(x) = x$. Noter les limites en $-\infty$ et en $+\infty$.
\item Réaliser le même travail pour les fonctions $x^2$, $x^3$, $x^4$ et $x^5$.
\item Conjecturer les limites du tableau suivant:
\begin{center}
\begin{tabular}{|l|*{2}{c|}}
\hline
$\ds \lim_{x\rightarrow ...} x^n = $ & $n$ paire & $n$ impaire\\
\hline
$+\infty$ & & \\
\hline
$-\infty$ & & \\
\hline
\end{tabular}
\end{center}
\end{enumerate}
2021-04-27 13:54:04 +00:00
\item Simplification des limites des polynôme.
\begin{enumerate}
2021-04-27 13:54:04 +00:00
\item Régler les curseurs pour faire apparaitre la fonction $P(x) = x^5 + x^4 + x^3 + x^2 + x + 1$
\item Déplacer les curseurs b, c, d, e et f. Est-ce que ces curseurs ont un impact sur les limites en $+\infty$? en $-\infty$?
\item Proposer une façon de simplifier les calculs de limites.
\item Faire varier le curseur a, quel est son impact sur les limites?
\end{enumerate}
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Calculs de limites de polynômes}, step={2}, origin={Création}, topics={Limites de fonctions}, tags={Fonctions, limites}]
2021-04-27 13:54:04 +00:00
Calculer les limites suites
\begin{multicols}{3}
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} 2x^2 + 3x + 1 = $
\item $\ds \lim_{x\rightarrow -\infty} 2x^2 + 3x + 1 = $
\item $\ds \lim_{x\rightarrow +\infty} -4x^2 + 3x + 1 = $
\item $\ds \lim_{x\rightarrow -\infty} -4x^2 + 100 x - 4 = $
\item $\ds \lim_{x\rightarrow +\infty} 4x^3 - 3x + 100 = $
\item $\ds \lim_{x\rightarrow -\infty} -7x^5 + 6x + 0.7 = $
\item $\ds \lim_{x\rightarrow +\infty} 2x^2 - 3x^3 + 19 = $
\item $\ds \lim_{x\rightarrow -\infty} -0.1x^11 + x + 1 = $
\item $\ds \lim_{x\rightarrow +\infty} \frac{-1}{2}x^5 + 3x + 1 = $
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{exercise}[subtitle={Calculs de limites avec polynômes et exponentielle}, step={4}, origin={Création}, topics={Limites de fonctions}, tags={Fonctions, limites}]
Calculer les limites suivantes
\begin{multicols}{3}
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} 3e^x$
\item $\ds \lim_{x\rightarrow +\infty} -5e^x$
\item $\ds \lim_{x\rightarrow +\infty} 2e^x + x + 1$
\columnbreak
\item $\ds \lim_{x\rightarrow +\infty} x^2 e^x$
\item $\ds \lim_{x\rightarrow +\infty} (-3x + 1)e^x$
\item $\ds \lim_{x\rightarrow +\infty} (x^5 + 3x^2 + 5x) e^x$
\columnbreak
\item $\ds \lim_{x\rightarrow +\infty} \frac{2x}{e^x}$
\item $\ds \lim_{x\rightarrow +\infty} \frac{5x^2 + 4x + 1}{e^x}$
\item $\ds \lim_{x\rightarrow +\infty} \frac{-2x}{e^x} + 1$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{exercise}[subtitle={Taux de $CO_2$}, step={4}, origin={Création}, topics={Limites de fonctions}, tags={Fonctions, limites}]
On admet que cette fonction $V$, définie et dérivable sur l'intervalle [0~;~690] est une solution, sur cet intervalle, de l'équation différentielle
\[ y' + 0, 01y = 4,5\]
\begin{enumerate}
\item Déterminer la solution générale de l'équation différentielle $(E)$.
\item Vérifier que pour tout réel $t$ de l'intervalle [0~;~690], $V(t) = \np{4950} \text{e}^{-0,01t} + 450$.
\item Déterminer la limite de $V(t)$ quand $t$ tend vers $+\infty$.
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Batteries}, step={4}, origin={Création}, topics={Limites de fonctions}, tags={Fonctions, limites}]
Dans cet exercice, on s'intéresse aux batteries des voitures électriques. La charge (énergie restituable) est exprimée en kilowattheure.
Conformément à l'usage commercial, on appelle capacité la charge complète d'une batterie.
On dispose des renseignements suivants :
\framebox{%
\begin{minipage}{0.3\linewidth}
\textbf{Document 1:\\ Caractéristiques des bornes de recharge}
{\small
\begin{tabular}{|*{3}{p{1.3cm}|}}
\hline
Recharge & Tension (V) & Intensité (A)\\
\hline
Normal & 230 & 16 \\
\hline
Semi-rapide & 400 & 16\\
\hline
Rapide & 400 & 63\\
\hline
\end{tabular}
}
\end{minipage}}
\hfill
\framebox{%
\begin{minipage}{0.3\linewidth}
\textbf{Document 2: \\
Exemple de capacités de batterie}
{\small
\begin{itemize}
\item Marque A: 22kWh
\item Marque B: 24kWh
\item Marque C: 33kWh
\item Marque D: 60kWh
\end{itemize}
}
\end{minipage}}
\hfill
\framebox{%
\begin{minipage}{0.3\linewidth}
\textbf{Document 3: \\Bon à savoir pour une batterie vide}
{\small
Après 50\% de temps de charge complète, la batterie est à environ 80\% de sa capacité de charge
}
\end{minipage}}
\begin{enumerate}
\item La puissance de charge P d'une borne de recharge, exprimée en Watt (W), s'obtient en multipliant sa tension U, exprimée en Volt (V), par son intensité I, exprimée en Ampère (A).
Dans la pratique, on considère que le temps T de charge complète d'une batterie vide, exprimé en heure (h), s'obtient en divisant la capacité C de la batterie, exprimée usuellement en kilowattheure (kWh), par la puissance de charge P de la borne de recharge exprimée en kilowatt (kW).
On considère une batterie de la marque D.
Déterminer le temps de charge complète de cette batterie sur une borne de recharge \og Rapide \fg. Exprimer le résultat en heures et minutes.
\item Lors du branchement d'une batterie vide de marque A sur une borne de recharge de type \og Normal \fg, la charge (en kWh) en fonction du temps (en heure) est modélisée par une fonction $f$ définie et dérivable sur $[0~;~+\infty[$ solution de l'équation différentielle:
\[
y' + 0,55y = 12,1
\]
\begin{enumerate}
\item Résoudre l'équation différentielle sur $\intOF{0}{+\infty}$
\item Justifier que $f(0)=0$.
\item Montrer que la fonction $f$ est définie par $f(x) = -22e^{-0,55t} + 22$
\item Déterminer la limite de $f(t)$ quand $t$ tend vers $+\infty$. Interpréter le résultat dans le cadre de cet exercice.
\end{enumerate}
\end{enumerate}
\end{exercise}
2021-06-03 09:12:55 +00:00
\begin{exercise}[subtitle={Batteries}, step={5}, origin={Création}, topics={Limites de fonctions}, tags={Fonctions, limites}]
L'octane est un hydrocarbure qui entre dans la composition de l'essence.
Lorsqu'on chauffe un mélange d'octane et de solvant dans une cuve, une réaction chimique transforme progressivement l'octane en un carburant plus performant, appelé iso-octane.
La concentration d'octane, en moles par litre, dans la cuve est modélisée par une fonction $f$ du temps $t$, exprimé en minutes. On admet que cette fonction $f$, définie et dérivable sur l'intervalle $[0~;~+\infty[$, est une solution, sur cet intervalle, de l'équation différentielle suivante:
\[(E)~:~y'+0,12y=0,003.\]
À l'instant $t = 0$, la concentration d'octane dans la cuve est de $0,5$~mole par litre (mol.L$^{-1}$).
\begin{enumerate}
\item
\begin{enumerate}
\item Déterminer la solution générale de l'équation différentielle $(E)$.
\item Donner $f(0)$.
\item Vérifier que la fonction $f$ est définie sur $[0~;~+\infty[$ par $f(t) = 0,475\e^{-0,12t}+0,025$.
\end{enumerate}
\item
\begin{enumerate}
\item Calculer la fonction dérivée de la fonction $f$ sur l'intervalle $[0~;~+\infty[$.
\item Étudier le sens de variation de la fonction $f$ sur l'intervalle $[0~;~+\infty[$.
\item Interpréter cette réponse dans le contexte de l'exercice.
\end{enumerate}
\item Calculer, en justifiant votre réponse, à la minute près, le temps nécessaire pour obtenirune concentration en octane dans la cuve de $0,25$ mole par litre.
\item
\begin{enumerate}
\item Calculer, en justifiant votre réponse, $\ds \lim_{t\to +\infty} f(t)$.
Interpréter le résultat dans le contexte.
\item Le processus de transformation de l'octane en iso-octane est arrêté au bout d'une heure. Expliquer ce choix.
\end{enumerate}
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Batteries}, step={5}, origin={Création}, topics={Limites de fonctions}, tags={Fonctions, limites}]
\textbf{Partie A}
\medskip
On considère la fonction $w$ définie pour tout réel positif $t$ par :
\[w(t) = 4 \text{e}^{-200t} + 146.\]
On note $C$ la courbe représentative de la fonction $w$ dans un repère orthonormé.
\medskip
\begin{enumerate}
\item
\begin{enumerate}
\item Calculer $w(0)$.
\item Déterminer la limite de la fonction $w$ lorsque $t$ tend vers $+ \infty$ et interpréter graphiquement cette limite.
\end{enumerate}
\item On note $w'$ la fonction dérivée de la fonction $w$ sur l'intervalle
$[0~;~+ \infty[$.
\begin{enumerate}
\item Pour tout réel positif $t$, calculer $w'(t)$.
\item Étudier le signe de $w'$ sur l'intervalle $[0~;~+ \infty[$.
\item Dresser le tableau de variation de la fonction $w$ sur l'intervalle $[0~;~+ \infty[$.
\item Déterminer une équation de la tangente à la courbe $C$ au point d'abscisse 0 .
\end{enumerate}
\end{enumerate}
\bigskip
\textbf{Partie B}
\medskip
On étudie l'évolution de la vitesse d'un moteur dont la vitesse de rotation à vide est de
$150$~rad.s$^{-1}$.
On s'intéresse à une phase particulière appelée phase d'embrayage.
Durant cette phase, la vitesse de rotation du moteur, exprimée en rad.s$^{-1}$, est modélisée par une fonction solution de l'équation différentielle $(E)$ :
\[\dfrac{1}{200}y' + y = 146\]
$y$ désigne une fonction dérivable de la variable réelle $t$ positive et exprimée en seconde.
\medskip
\begin{enumerate}
\item
\begin{enumerate}
\item Résoudre cette équation différentielle.
\item Vérifier que la fonction $w$ étudiée dans la \textbf{partie A} est la fonction solution de l'équation différentielle $(E)$ vérifiant la condition initiale $w(0) = 150$.
\end{enumerate}
\item Interpréter, dans le contexte de l'exercice, la limite de $w(t)$ lorsque $t$ tend vers $+ \infty$ ainsi que le sens de variation de la fonction $w$, déterminés dans la \textbf{partie A}.
\item On considère que la vitesse de rotation du moteur, exprimée en rad.s$^{-1}$, est stabilisée
lorsque la quantité $\dfrac{w(t)-146}{146}$ est inférieure à $0,01$.
Calculer le temps mis par le moteur pour stabiliser sa vitesse. On donnera la valeur
exacte puis la valeur arrondie au millième de seconde.
\end{enumerate}
\end{exercise}
\collectexercisesstop{banque}