2020-2021/TST/04_Formalisation_des_suites/exercises.tex

117 lines
6.1 KiB
TeX
Raw Normal View History

\collectexercises{banque}
\begin{exercise}[subtitle={Continuer une suite}, step={1}, origin={Création}, topics={Formalisation des suites}, tags={Suites, Analyse}]
Ci-dessous, vous trouverez des débuts de suites de nombre.
\begin{multicols}{3}
\begin{enumerate}
\item $u_0 = 10$, $u_1 = 15$, $u_2 = 22.5$
\item $v_0 = 10$, $v_1 = 15$, $v_2 = 20$
\item $w_0 = 90$, $w_1 = 108$, $w_2 = 129,6$
\item $x_0 = 90$, $x_1 = 54$, $x_2 = 32.4$
\item $y_0 = 5$, $y_1 = 2$, $y_2 = -1$
\item $z_0 = 5$, $z_1 = 25$, $z_2 = 125$
\end{enumerate}
\end{multicols}
\begin{enumerate}
\item Identifier la nature et les paramètres des suites.
\item Pour chaque suites, calculer les 3 termes qui suivent, le 10e terme, le 100e et le 1000e terme.
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Dépréciation d'un véhicule}, step={1}, origin={??}, topics={Formalisation des suites}, tags={Suites, Analyse}]
Un transporteur a acheté en 2006 un véhicule fourgon de 9 tonnes au prix de \np{50200}\euro, taxes comprises. Compte tenu du nombre de kilomètres parcourus, le véhicule a perdu 20\% de sa valeur chaque année.
\begin{enumerate}
\item Calculer la valeur du véhicule après 1an puis après 3 ans.
\item Pour tout entier $n$, on note $u_n$, la valeur résiduelle du véhicule l'année "2006+n".
\begin{enumerate}
\item Calculer $u_2$. Interpréter le résultat.
\item Écrire une formule qui modélise le passage de $u_n$ à $u_{n+1}$.
\item En déduire la nature et les paramètres de la suite $(u_n)$.
\item Écrire une formule qui calcule $u_n$ pour n'importe quelle valeur de $n$.
\end{enumerate}
\item Calculer la valeur résiduelle du véhicule en 2012. Puis en 2050. Arrondir à l'euro.
\item Écrire un programme Python qui calcul la valeur du véhicule en 2100.
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Placement banquaire}, step={1}, origin={Création}, topics={Formalisation des suites}, tags={Suites, Analyse}]
On veut placer sur un compte en banque 1000\euro. Le banquier propose deux solutions.
\begin{itemize}
\item Placement à rendement fixe: la valeur du compte en banque augmente de 5\% du placement initiale chaque année.
\item Placement avec intérêt composés: la valeur du compte en banque augmente de 4\% chaque année.
\end{itemize}
\begin{enumerate}
\item Pour chaque placement, calculer le solde du compte après 1an, 2ans puis 3ans.
\item Combien de temps doit-on attendre avant que le placement avec intérêt composés devienne plus rentable que l'autre placement?
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Chiffre d'afaire}, step={2}, origin={Création}, topics={Formalisation des suites}, tags={Suites, Analyse}]
Deux entreprises viennent demander conseil à TST-consulting. Elles ont apporté un graphique suivant représentant leur chiffre d'affaire (en milliers d'euros) des années précédentes. Elles souhaites que vous lui fassiez une estimation de leur chiffre d'affaire en 2022 et que vous les aidiez à retrouver leur chiffre d'affaire en 2017 et 2019.
\includegraphics[scale=0.5]{./fig/CA_lineaire}
\hfill
\includegraphics[scale=0.5]{./fig/CA_expo}
\end{exercise}
\begin{exercise}[subtitle={Divers autour des moyennes}, step={3}, origin={Création}, topics={Formalisation des suites}, tags={Suites, Analyse}]
\begin{enumerate}
\item Calculer la moyenne géométrique des couples de nombres suivants
\begin{multicols}{3}
\begin{enumerate}
\item $a = 3$ et $b = 10$
\item $a = 15$ et $b = 50$
\item $a = 2,6$ et $b = 3$
\end{enumerate}
\end{multicols}
\item (*) Soit $(u_n)$ une suite géométrique dont on connait $u_0 = 1$ et $u_8 = 20$.
\begin{enumerate}
\item Calculer la moyenne géométrique de $u_0$ et $u_8$. Cette valeur est $u_4$.
\item Calculer la moyenne géométrique de $u_0$ et $u_4$. Cette valeur est $u_2$.
\item Calculer $u_1$ et déterminer la raison de cette suite géométrique.
\end{enumerate}
\item (*) Une quantité a augmenté de 10\% en deux ans. Quel a été le taux d'évolution de cette quantité sur un an?
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Évaluation de suites}, step={3}, origin={Création}, topics={Formalisation des suites}, tags={Suites, Analyse}]
Pour chacune des suites suivantes, calculer 3 premiers termes, identifier la nature et les paramètres de la suite, écrire la relation de récurrence puis exprimer $u_n$ en fonction de $n$.
\begin{multicols}{3}
\begin{enumerate}
\item $u_{n+1} = u_n + 6$ et $u_0 = 10$
\item $u_{n+1} = -0.5 + u_n$ et $u_0 = 15$
\item $u_{n+1} = 1.3u_n$ et $u_0 = 2$
\item $u_{n+1} = 0.95u_n$ et $u_0 = 10$
\item $u_{n} = 2n + 5$
\item $u_{n} = 10\times0.5^n$
\item (*) $u_{n} = 2u_n-5$ et $u_0 = 10$
\item (*) $u_{n} = 0.3\times 4^n$
\item (*) $u_{n} = 2n^2 - n + 2$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{exercise}[subtitle={Retrouver ce qui manque}, step={3}, origin={Création}, topics={Formalisation des suites}, tags={Suites, Analyse}]
Pour chacune des suites suivantes retrouver la raison et le premier terme, écrire la relation de récurrence puis exprimer $u_n$ en fonction de $n$.
\begin{multicols}{2}
\begin{enumerate}
\item $(u_n)$ suite arithmétique telle que $u_2 = 10$ et $u_4=20$.
\item $(v_n)$ suite arithmétique telle que $u_{10} = 5$ et $u_{15} = 6$.
\item $(w_n)$ suite géométrique telle que $u_2 = 5$ et $u_3 = 6$.
\item $(x_n)$ suite géométrique telle que $u_3 = 10$ et $u_5 = 20$.
\end{enumerate}
\end{multicols}
\end{exercise}
\collectexercisesstop{banque}