Feat: Version du DS10 pour les TST3
continuous-integration/drone/push Build is passing Details

This commit is contained in:
Bertrand Benjamin 2021-06-03 10:39:43 +02:00
parent 408da391e8
commit 4037ef219d
4 changed files with 120 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,38 @@
\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\usepackage{moreverb}
% Title Page
\title{DS 10}
\tribe{TST3}
\date{04 juin 2021}
\duree{1h}
\DeclareExerciseCollection{banque}
\xsimsetup{
%type=Exercise,
tribe=1,
}
\newcommand{\reponse}[1]{%
\begin{bclogo}[barre=none, logo=]{Réponse}
\vspace{#1}
\end{bclogo}
}
\pagestyle{empty}
\begin{document}
\maketitle
Le barème est donné à titre indicatif, il pourra être modifié.
\input{exercises.tex}
\printcollection{banque}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End:

View File

@ -0,0 +1,82 @@
\collectexercises{banque}
\begin{exercise}[subtitle={Questions diverses}, points=5, tribe={1}, type={automatismes}]
Les réponses aux questions suivantes devront être justifiées.
\begin{enumerate}
\item ~
\begin{minipage}{0.5\linewidth}
Ci-dessous un tableur résumant l'évolution de l'indice et du prix de matières première. Pour l'indice, on prend l'année 2018 comme référence.
\vfill
\begin{center}
\begin{tabular}{|c|*{4}{c|}}
\hline
Année & 2018 & 2019 & 2020 & 2017\\
\hline
Prix & & 188.5 & 155 & \\
\hline
Indice & 100 & & 50 & 123\\
\hline
\end{tabular}
\end{center}
\end{minipage}
\begin{minipage}{0.5\linewidth}
Calculer le prix de l'année de référence.
\reponse{2cm}
\end{minipage}
\item Lors des soldes, un pantalon a une réduction de 5\%, puis une deuxième réduction de 6\% et enfin une dernière réduction de 10\%. Quel est le pourcentage de remise total?
\reponse{2cm}
\item En une semaine, le nombre de vues d'une vidéo est passée de \np{1000} vues à \np{14300}. Calculer le taux d'évolution de cette progression.
\reponse{2cm}
\item Le polynôme $P(x) = -3x^2 + 1.5x - 0.18$ a pour racines $x=0.2$ et $x=0.3$. Proposer une forme factorisée de ce polynôme.
\reponse{2cm}
\item Tracer approximativement une courbe qui a le tableau de variation suivant en faisant apparaître les éléments remarquables.
\begin{minipage}{0.5\linewidth}
\begin{tikzpicture}[baseline=(current bounding box.south)]
\tkzTabInit[lgt=2,espcl=2]
{$ x $/1, $ f(x) $/2}{$-\infty$, -2, 4, $+\infty$ }
\tkzTabVar{ +/, -D-/, +/2, -/}
\end{tikzpicture}
\end{minipage}
\begin{minipage}{0.5\linewidth}
\reponse{4cm}
\end{minipage}
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Fonction inverse}, points=5, tribe={1}, type={Exercise}]
Soit la fonction définie sur par :
\[
f(x) = 4x + \frac{1}{x}
\]
On admet que la fonction est dérivable sur $\intFF{0.1}{4}$ et on note $f'(x)$ la fonction dérivée de la fonction sur $\intFF{0.1}{4}$.
À laide dun tableur, on veut obtenir un tableau de valeurs de la fonction $f$ pour $x$ variant de 0.1 à 4 avec un pas de 0.1 ainsi quune allure de la représentation graphique de la fonction $f$ sur $\intFF{0.1}{4}$. On donne ci-dessous un extrait de la feuille automatisée de calcul ainsi obtenue :
\begin{center}
\includegraphics[scale=0.8]{./fig/graph}
\end{center}
\begin{enumerate}
\item Quelle formule, destinée à être ensuite étirée vers le bas, peut-on saisir dans la cellule \texttt{B2} afin d'obtenir les valeurs de $f(x)$ pour $x$ variant de 0.1 à 4.
\item Calculer $f'(x)$ la dérivée de $f(x)$.
\item Montrer que l'on peut écrire $f'(x)$ sous la forme $\dfrac{(2x-1)(2x+1)}{x^2}$.
\item Étudier le signe de $f'(x)$ et en déduire les variations de $f(x)$.
\item Est-il vrai que pour tout $x$ dans l'intervalle $\infFF{0.1}{4}$, $f(x)$ est toujours supérieur ou égale à 4? Justifier votre réponse.
\end{enumerate}
\end{exercise}
\collectexercisesstop{banque}

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB