Dans cet exercice, on étudie des fonctions qui manipulent des nombres complexes. On étudiera leurs effets géométriques à partir des points $A$, $B$, $C$ et $D$ définit par les nombres complexes suivants
\[
z_A = 1 + i \qquad
z_B = 1 - 2i \qquad
z_C = -3 + i \qquad
z_D = 2 - i
\]
\begin{enumerate}
\item Tracer le plan complexe et placer les points.
\item On définit la fonction $f(z)= z +2i +1$
\begin{enumerate}
\item Calculer $z_{A'}= f(z_A)$ puis placer en rouge la point $A'$ sur le plan complexe.
\item Faire la même chose pour $z_B$, $z_C$ et $z_D$.
\item Décrire l'effet géométrique de la fonction $f$.
\end{enumerate}
\item On définit la fonction $g(z)= z - i +2$
\begin{enumerate}
\item Calculer $z_{A''}= g(z_A)$ puis placer en noir la point $A''$ sur le plan complexe.
\item Faire la même chose pour $z_B$, $z_C$ et $z_D$.
\item Décrire l'effet géométrique de la fonction $g$.
\end{enumerate}
\item On définit la fonction $h(z)=2z$
\begin{enumerate}
\item Calculer $z_{A'''}= g(z_A)$ puis placer en vert la point $A'''$ sur le plan complexe.
\item Faire la même chose pour $z_B$, $z_C$ et $z_D$.
\item Décrire l'effet géométrique de la fonction $h$.
\end{enumerate}
\item(*) On définit la fonction $j(z)= iz$
\begin{enumerate}
\item Calculer $z_{A""}= g(z_A)$ puis placer en vert la point $A""$ sur le plan complexe.
\item Faire la même chose pour $z_B$, $z_C$ et $z_D$.
\item Décrire l'effet géométrique de la fonction $j$.
\end{enumerate}
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Transformations du plan complexe}, step={3}, origin={Création}, topics={Complexes}, tags={Complexes, Fonctions}]
Écrire la fonction complexe qui permet de réaliser les transformations suivantes
\begin{enumerate}
\item La translation de 2 unités à droite et 1 unité en bas.
\item La translation de vecteur $\vec{v}=\vectCoord{-2}{-5}$.