2021-2022/2nd/03_Fonctions_et_graphiques/exercises.tex

345 lines
14 KiB
TeX
Raw Normal View History

\begin{exercise}[subtitle={Tracer des graphes}, step={1}, origin={Inspiré de Graphing Stories de Dan Meyer}, topics={ Fonctions et graphiques }, tags={ Fonctions, Graphiques }]
\begin{enumerate}
\item Tracer les graphiques correspondants aux vidéos présentées
\hspace{-1cm}
\includegraphics[scale=0.13]{./fig/weight_stack} &
\includegraphics[scale=0.13]{./fig/balloon_lenght} &
\includegraphics[scale=0.13]{./fig/distance_camera} &
\item Tracer 3 graphiques différents à partir de la vidéo.
\hspace{-1cm}
\begin{tikzpicture}[yscale=1, xscale=1]
\tkzInit[xmin=0,xmax=5,xstep=1, ymin=0,ymax=5,ystep=1]
\tkzGrid[sub]
\tkzDrawXY
\end{tikzpicture}
\hfill
\begin{tikzpicture}[yscale=1, xscale=1]
\tkzInit[xmin=0,xmax=5,xstep=1, ymin=0,ymax=5,ystep=1]
\tkzGrid[sub]
\tkzDrawXY
\end{tikzpicture}
\hfill
\begin{tikzpicture}[yscale=1, xscale=1]
\tkzInit[xmin=0,xmax=5,xstep=1, ymin=0,ymax=5,ystep=1]
\tkzGrid[sub]
\tkzDrawXY
\end{tikzpicture}
\item Écrire 4 questions qui pourraient être répondu par la lecture des graphiques que vous venez de tracer.
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Concentration médicaments}, step={3}, origin={Sesamaths 83p205}, topics={ Fonctions et graphiques }, tags={ Fonctions, Graphiques }]
On a mesuré en continue pendant 4h, la concentration $C$ d'un médicament dans le sang d'un patient. On a représenté les données dans le graphique ci-dessous.
\noindent
\begin{minipage}{0.45\linewidth}
\begin{enumerate}
\item Quelles sont les deux grandeurs reliés dans le graphique?
\item Quelle est la concentration de médicaments dans le sang au bout de 2h?
\item A quel(s) moment(s) la concentration a-t-elle été de 0.5mg/L?
\item A quelle moment la concentration du médicament a-t-elle été maximal? Quelle était alors cette concentration?
\end{enumerate}
\end{minipage}
\hfill
\begin{minipage}{0.5\linewidth}
\includegraphics[scale=0.4]{./fig/concentration}
\end{minipage}
\begin{enumerate}
\setcounter{enumi}{4}
\item Définir le moment où la concentration a été supérieur à 1mg/L.
\item Combien de temps la concentration a été supérieur à 0.25mg/L?
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Fabricants de machins}, step={3}, origin={Nathan 2ST 1P119}, topics={ Fonctions et graphiques }, tags={ Fonctions, Graphiques }]
Une entreprise fabrique des \textit{machins}. Chaque jour, elle peut en produire entre 0 et 80 tonnes.
Le coût de fabrication et les recettes, en euros, de $x$ tonnes est modélisé par la fonction $C(x)$ et $R(x)$ représentées dans le graphique ci-dessous.
\noindent
\begin{minipage}{0.55\linewidth}
\begin{enumerate}
\item \textbf{Recettes}
\begin{enumerate}
\item Combien rapporte la vente de 50tonnes de \textit{machins}.
2021-09-20 08:37:13 +00:00
\item Quelle quantité doit être vendue pour avoir une recette de \np{50000}?
\end{enumerate}
\item \textbf{Coûts de productions}
\begin{enumerate}
\item Combien coûte la production de 50tonnes de \textit{machins}.
\item Quelle quantité de \textit{machins} peut-on produire pour une coût de fabrication de \np{100000}\euro?
\end{enumerate}
\item \textbf{Les bénéfices} sont la différence entre les recettes et les coûts.
\begin{enumerate}
\item L'entreprise réalise-t-elle des bénéfices en produisant 10tonnes?
\item Déterminer graphiquement les productions où ses bénéfices sont positifs.
\end{enumerate}
\end{enumerate}
\end{minipage}
\begin{minipage}{0.4\linewidth}
\begin{tikzpicture}
\begin{axis}[
axis lines = left,
y tick label style={/pgf/number format/.cd,%
scaled y ticks = false,
set thousands separator={$ $},
fixed},
grid= both,
xlabel = {En tonnes},
xtick distance=5,
ylabel = {En \euro},
ytick distance=10000,
every axis y label/.style={at={(current axis.north west)},above=2mm},
legend pos = north west,
legend entries={$C(x)$, $R(x)$}
]
\addplot[domain=0:80,samples=100, color=red, very thick]{x^3 - 105*x^2 + 3700*x + 4000 };
\addplot[domain=0:80,samples=3, color=blue, very thick]{1900*x} node [above] {$R(x)$};
\end{axis}
\end{tikzpicture}
\end{minipage}
\end{exercise}
\begin{exercise}[subtitle={Lecture graphique}, step={4}, origin={???}, topics={ Fonctions et graphiques }, tags={ Fonctions, Graphiques }]
\begin{minipage}{0.5\textwidth}
\begin{tikzpicture}[yscale=0.4, xscale=0.6]
%\repere{-9}{4}{-5}{4}
\tkzInit[xmin=-9,xmax=4,xstep=1,
ymin=-4,ymax=5,ystep=1]
\tkzGrid
\tkzAxeXY
\draw[very thick, color=red] plot [smooth,tension=0.2] coordinates{%
(-8,-0.2) (-6,-3) (-2,4.5) (0,2) (1,0) (3,-1.5)
};
\draw (3,1) node[above right] {$\mathcal{C}_f$};
\end{tikzpicture}
\end{minipage}
\begin{minipage}{0.5\textwidth}
Décrire avec une phrase la quantité cherchée (représentée pas des pointillés) puis la déterminer graphiquement.
\begin{multicols}{2}
\begin{enumerate}
\item $f(-6) = \dots$
\item $f(0) = \dots$
\item $f(\dots) = 0$
\item $f(\dots) = 2$
\item $f(\dots) = -5$
\item $f(\dots) \leq 0$
\item $f(\dots) > -2$
\item $f(\dots) \geq 1 $
\end{enumerate}
\end{multicols}
\end{minipage}
\end{exercise}
\begin{exercise}[subtitle={Lecture graphique}, step={4}, origin={???}, topics={ Fonctions et graphiques }, tags={ Fonctions, Graphiques }]
Sur le graphique ci-dessous, on a tracé les représentations graphiques des fonctions
\[
f(x) = 0.05(x+5)(x+1)(x-4) \qquad g(x) = 0.1x^2 - 1
\]
\begin{minipage}{0.4\textwidth}
\begin{tikzpicture}
\begin{axis}[
axis lines = center,
grid = both,
xlabel = {$x$},
xtick distance=1,
ylabel = {$y$},
ytick distance=1,
legend pos = north west,
legend entries={$f(x)$, $g(x)$}
]
\addplot[domain=-6:6,samples=20, color=red, very thick]{0.05*(x+5)*(x+1)*(x-4)};
\addplot[domain=-6:6,samples=20, color=blue, very thick]{0.1*x^2 - 1};
\end{axis}
\end{tikzpicture}
\end{minipage}
\begin{minipage}{0.6\textwidth}
\begin{enumerate}
\item Déterminer graphiquement les quantités suivantes
\begin{multicols}{4}
\begin{enumerate}
\item $f(5)$
\item $g(-3)$
\item $f(0)$
\item $g(3)$
\end{enumerate}
\end{multicols}
\item Résoudre graphiquement les équations suivantes
\begin{multicols}{2}
\begin{enumerate}
\item $g(x) = 0$
\item $f(x) = 2$
\item $0.1x^2 - 1 = -1$
\item $f(x) = g(x)$
\end{enumerate}
\end{multicols}
\item Résoudre graphiquement les inéquations suivantes
\begin{multicols}{3}
\begin{enumerate}
\item $g(x) \geq 0$
\item $f(x) \leq 2$
\item $g(x) > f(x)$
\end{enumerate}
\end{multicols}
\begin{enumerate}
\setcounter{enumii}{3}
\item $0.05(x+5)(x+1)(x-4) > 1 $
\end{enumerate}
\end{enumerate}
\end{minipage}
\end{exercise}
\begin{exercise}[subtitle={Lecture graphique}, step={4bis}, origin={???}, topics={ Fonctions et graphiques }, tags={ Fonctions, Graphiques }]
Sur le graphique ci-dessous, on a tracé la représentation graphique de la fonction: $f(x) = 0.1(x+4)(x+1)(x-5)$
Vous répondrez aux questions suivantes en utilisant le graphique ci-contre.
\begin{minipage}{0.4\textwidth}
\begin{tikzpicture}
\begin{axis}[
axis lines = center,
%grid = both,
xlabel = {$x$},
xtick distance=1,
ylabel = {$y$},
ytick distance=1,
legend pos = north west,
legend entries={$f(x)$, $g(x)$}
]
\addplot[domain=-6:6,samples=40, color=red, very thick]{0.1*(x+4)*(x+1)*(x-5)};
\end{axis}
\end{tikzpicture}
\end{minipage}
\begin{minipage}{0.6\textwidth}
\begin{enumerate}
\item Déterminer graphiquement les quantités suivantes
\begin{multicols}{3}
\begin{enumerate}
\item $f(-5)$
\item $f(2)$
\item $f(-2)$
\end{enumerate}
\end{multicols}
\begin{enumerate}
\setcounter{enumii}{3}
\item Image de 1 par la fonction $f$
\end{enumerate}
\item Décrire comment déterminer une image.
\item Résoudre graphiquement les équations suivantes
\begin{multicols}{3}
\begin{enumerate}
\item $f(x) = -4$
\item $f(x) = 2$
\item $f(x) = -5$
\end{enumerate}
\end{multicols}
\begin{enumerate}
\setcounter{enumii}{3}
\item Les antécédents de -3
\end{enumerate}
\item Décrire comment déterminer un antécédent.
\end{enumerate}
\end{minipage}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item Les valeurs suivantes sont approximatives
\begin{enumerate}
\item $f(-5) = -4$
\item $f(2) \approx -5.5$
\item $f(-2) \approx 1,5$
\item L'image de 1 par $f$ est -4
\end{enumerate}
\item \textit{À vous de vous faire une phrase}
\item
\begin{enumerate}
\item $f(x) = -4$ quand $x = -5$, $x = 1$ ou $x = 4$. On peut noter $\mathcal{S} = \{-5; 1; 4\}$
\item $f(x) = 2$ quand $x = 5,5$. On peut noter $\mathca{S} = \{5,5\}$
\item $\mathcal{S} = \{-5,5;~ 2;~ 3,5\}$
\item Les antécédents de -3 sont environ -4,5; 0,5 et 4,2 .
\end{enumerate}
\item \textit{À vous de vous faire une phrase}
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Encore une?}, step={4bis}, origin={???}, topics={ Fonctions et graphiques }, tags={ Fonctions, Graphiques }]
Sur le graphique ci-dessous, on a tracé la représentation graphique de la fonction: $f(x) = -0.05(x+5)(x-1)(x-6)$
Vous répondrez aux questions suivantes en utilisant le graphique ci-contre.
\begin{minipage}{0.4\textwidth}
\begin{tikzpicture}
\begin{axis}[
axis lines = center,
%grid = both,
xlabel = {$x$},
xtick distance=1,
ylabel = {$y$},
ytick distance=1,
legend pos = north west,
legend entries={$f(x)$, $g(x)$}
]
\addplot[domain=-6:7,samples=40, color=red, very thick]{-0.1*(x+5)*(x-1)*(x-6)};
\end{axis}
\end{tikzpicture}
\end{minipage}
\begin{minipage}{0.6\textwidth}
\begin{enumerate}
\item Déterminer graphiquement les quantités suivantes
\begin{multicols}{3}
\begin{enumerate}
\item $f(4)$
\item $f(1)$
\item $f0$
\end{enumerate}
\end{multicols}
\item Résoudre graphiquement les équations suivantes
\begin{multicols}{3}
\begin{enumerate}
\item $f(x) = 4$
\item $f(x) = -3$
\item $f(x) = 0$
\end{enumerate}
\end{multicols}
\item Résoudre graphiquement les inéquations suivantes
\begin{multicols}{2}
\begin{enumerate}
\item $f(x) \leq 0$
\item $f(x) \geq -3$
\end{enumerate}
\end{multicols}
\end{enumerate}
\end{minipage}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item
\begin{enumerate}
\item $f(4)=2.7$
\item $f(1) = 0$
\item $f(0) = -1,5$
\end{enumerate}
\item
\begin{enumerate}
\item $\mathcal{S} = \{ -5.5;~ 2,5;~ 5,2\}$
\item $\mathcal{S} = \{ -4,5;~ 0;~ 6,5\}$
\item $\mathcal{S} = \{ -5;~ 1;~ 6\}$
\end{enumerate}
\item Dans la suite le symbole $\cup$ se lit "ou"
\begin{enumerate}
\item $\mathcal{S} = \intFF{-5}{1} \cup \intFF{6}{7}$
\item $\mathcal{S} = \intFF{-4,5}{0} \cup \intFF{6,5}{7}$
\end{enumerate}
\end{enumerate}
\end{solution}